Saturday, September 21, 2019

Productivity Science of Human Effort - F.W. Gilbreth

Productivity Science - Principle of Industrial Engineering

https://nraoiekc.blogspot.com/2017/06/productivity-science-principle-of.html

F.W. Taylor is the pioneer of scientific management. He advocated strongly that science in management of work in production shops did not exist and there is an immediate need to develop science for every element of production work. He himself conducted studies and experiments to develop science of machine tool work/effort and human effort. He contributed to the development of science in both the areas. But in the area of human effort, Frank Gilbreth followed Taylor with a more elaborate framework for productivity science of human effort.

Productivity Science of Human Effort - F.W. Gilbreth


Source:
MOTION STUDY: A METHOD FOR INCREASING THE EFFICIENCY OF THE WORKMAN
BY  FRANK B. GILBRETH

Published in 1911 by D Van Nostrand Company, New York


PREFACE



The aim of motion study is to find and perpetuate the scheme of perfection. There are three stages in this study:

1. Discovering and classifying the best practice.
2. Deducing the laws.
3. Applying the laws to standardize practice, either for the purpose of increasing output or decreasing hours of  labor, or both.


CHAPTER I

There is no waste of any kind in the world that equals the waste from needless, ill-directed, and ineffective motions. When one realizes that in such a trade as brick-laying alone, the motions now adopted after careful study have already cut down the bricklayer's work more than two-thirds, it is possible to realize the amount of energy that is wasted by the workers of this country.

The census of 1900 showed 29,287,070 persons, ten years of age and over, as engaged in gainful occupations. Taking the case of the nearly thirty million workers cited above, it would be a conservative estimate that would call half their motions utterly wasted.

By motion study the earning capacity of the workman can surely be more than doubled. Wherever motion study has been applied, the workman's output has been doubled. This will mean for every worker either more wages or more leisure.

But the most advisable way to utilize this gain is not a question which concerns us now. We have not yet reached the stage where the solving of that problem becomes a necessity far from it! Our duty is to study the motions and to reduce them as rapidly as possible to standard sets of least in number, least in fatigue, yet most effective motions. This has not been done perfectly as yet for any branch of the industries. In fact, so far as we know, it has not, before this time, been scientifically attempted. It is this work, and the method of attack for undertaking it, which it is the aim of this book to explain.

PLACE OF MOTION STUDY IN SCIENTIFIC MANAGEMENT


Motion study as herein shown has a definite place in the evolution of scientific management not wholly appreciated by the casual reader.

Its value in cost reducing cannot be overestimated, and its usefulness in all three types of  management Military, or driver; Interim, or transitory; and Ultimate, or functional is constant.

In increasing output by selecting and teaching each workman the best known method of performing his work, motion economy is all important. Through it, alone, when applied to unsystematized work, the output can be more than doubled, with no increase in cost.

When the Interim system takes up the work of standardizing the operations performed, motion study enables the time-study men to limit their work to the study of correct methods only. This is an immense saving in time, labor, and costs, as the methods studied comply, as nearly as is at that stage possible, with the standard methods that will be synthetically constructed after the time study has
taken place.

Even when Ultimate system has finally been installed, and the scientifically timed elements are ready and at hand to be used by the instruction card man in determining the tasks, or schedules, the results of motion study serve as a collection of best methods of performing work that can be quickly and economically incorporated into instruction cards.

Motion study, as a means of increasing output under the military type of management, has consciously proved  its usefulness on the work for the past twenty-five years. Its value as a permanent element for standardizing work and its important place in scientific management have been appreciated only since observing its standing among the laws of management given to the world by Mr. Frederick W. Taylor, that great conservator of scientific investigation, who has done more than all others toward reducing the problem of management to an exact science.

Now tremendous savings are possible in the work of  everybody, they are not for one class, they are not for the trades only; they are for the offices, the schools, the colleges, the stores, the households, and the farms.  But the possibilities of benefits from motion study in the trades are particularly striking, because all trades, even at  their present best, are badly bungled.



PRESENT STAGE OF MOTION STUDY AND PRODUCTIVITY SCIENCE - 1911


We stand at present in the first stage of motion study, i.e., the stage of discovering and classifying the best practice. This is the stage of analysis.

The following are the steps to be taken in the analysis:

1. Reduce present practice to writing.

2. Enumerate motions used.

3. Enumerate variables which affect each motion.

4. Reduce best practice to writing.

5. Enumerate motions used.

6. Enumerate variables which affect each motion.



Gilbreth started with a list of variable that are of help in developing science of human effort (motion).


Frank B. Gilbreth - VARIABLES THAT AFFECT MOTION ECONOMY


Every element that makes up or affects the amount of work that the worker is able to turn out must be considered separately; but the variables which must be studied in analyzing any motion, group themselves naturally into some such divisions as the following:

I. Variables of the Worker.


1 . Anatomy.

2. Brawn.

3. Contentment.

4. Creed.

5. Earning Power.

6. Experience.

7. Fatigue.

8. Habits.

9. Health.

10. Mode of living.

11 . Nutrition.

12. Size.

13. Skill.

14. Temperament.

15. Training.

II. Variables of the Surroundings, Equipment, and Tools.


1. Appliances.

2. Clothes.

3. Colors.

4. Entertainment, music, reading, etc.

5. Heating, Cooling, Ventilating.

6. Lighting.

7. Quality of material.

8. Reward and punishment.

9. Size of unit moved.

10. Special fatigue-eliminating devices.

11. Surroundings.

12. Tools.

13. Union rules.

14. Weight of unit moved.

III. Variables of the Motion.


1. Acceleration.

2. Automaticity.

3. Combination with other motions and sequence.

4. Cost.

5. Direction.

6. Effectiveness.

7. Foot-pounds of work accomplished.

8. Inertia and momentum overcome.

9. Length.

10. Necessity,

11. Path.

12. "Play for position."

13. Speed.

In taking up the analysis of any problem of motion reduction we first consider each variable on the list separately, to see if it is an element of our problem.

Our discussion of these variables must of necessity be incomplete, as the subject is too large to be investigated thoroughly by any one student. Moreover, the nature of our work is such that only investigations can be made as show immediate results for increasing outputs or reducing unit costs.

The nature of any variable can be most clearly shown by citing a case where it appears and is of importance. But it is obviously impossible in a discussion such as this to attempt fully to illustrate each separate variable even of our incomplete list.

Since first writing these articles for Industrial Engineering it has been of great interest to the writer to learn of the conscious and successful application of the principles involved to the particular fields of work that have interested various readers. It was thought that unity might be lent to the argument by choosing the illustrations given from one field. The reader will probably find himself more successful in estimating the value of the underlying laws by translating the illustrations into his own vocabulary, by thinking in his own chosen material.

The practical value of a study such as this aims to be will be increased many fold by cooperation in application and illustration. The variables, at best an incomplete framework, take on form and personality when so considered.



Please Give Your Comments.


What is the relevance of Gilbreth's initial writing on Motion Study today?
What are new developments in this area?
What are new scientific discoveries related to human effort productivity?
What are new developments in human effort productivity engineering?
What are new development in human effort productivity management?


Gilbreth's Motion Study - Chapters
https://nraoiekc.blogspot.com/2015/08/motion-study-frank-b-gilbreth-part-1.html

Lessons 204 to 208  of Industrial Engineering ONLINE Course.

The Practice of Motion Study - Gilbreth - Part 1 - Part 2 - Part 3 - Part 4 - Part 5



Fair Use Explanation

https://fairuse.stanford.edu/overview/public-domain/welcome/


Copyright has expired for all works published in the United States before 1923. In other words, if the work was published in the U.S. before January 1, 1923, you are free to use it in the U.S. without permission.

Because of legislation passed in 1998, no new works will fall into the public domain until 2019, when works published in 1923 will expire. In 2020, works published in 1924 will expire, and so on. For works published after 1977, if the work was written by a single author, the copyright will not expire until 70 years after the author’s death. If a work was written by several authors and published after 1977, it will not expire until 70 years after the last surviving author dies.





No comments:

Post a Comment