Sunday, July 30, 2023

Resilience - Important for Industrial Engineers

 


Why do You require #Resiliency as an Innovator or Industrial Engineer or as Good Change Manager?

Success is not easy. Even if you develop a prototype of a device or an artifact based on your idea, people will be indifferent to your ideas. You need to believe in your passion, the logic behind it and the reasons you think people have to use it for their benefit.

F.W. Taylor said objective demonstration done repeatedly only will persuade people that too one by one.

In sales, objection handling is an important step. Industrial engineers are also salesmen selling their idea. Idea selling is part of marketing and sales textbooks. Hence, IEs have to be prepared for objections and for giving answers to them. Still, the internal customers may not agree and point out problems. IEs have to listen patiently, have to think once again about the solution and if they think it is right, they have to recommend it again at the next opportunity.

Sometimes any idea rejected for including it in a process, may be accepted in a different process. So filing and keeping track of promising ideas is important for industrial engineers.

Saturday, July 29, 2023

Toyota TPS - Industrial Engineering Activities and Jobs


Information for IE - Case 59 - Industrial Engineering ONLINE Course.



The success of Toyota in cost reduction, productivity improvement, and international competitiveness and its celebrated Toyota Production System, fulfilled the dream of Yoichi Ueno (that Japan can guide US in improved practices of efficiency improvement). The success of #Toyota and the World Class #TPS was  built on the sustained efforts many Japanese persons who understood Taylor and Gilbreth's writings and improvised them in implementing them in Japanese companies.

Toyota production system (TPS) evolved out of Toyota-style Industrial Engineering.


The two eminent persons directly involved in development of TPS - Taiichi Ohno and Shigeo Shingo made this statement in their books. Taiichi Ohno first authored a book on TPS for disseminating the concept and practices of TPS to other companies in Japan. Then using that book as the source material and foundation, Shigeo Shingo explained the role of industrial engineering in the development of TPS. Industrial engineers have to read Shingo's book to understand the important role industrial engineering philosophy and methods played in the emergence of work class manufacturing system of that period. Read about birth of TPS in an interview of Taiichi Ohno - How it all began - Taiichi Ohno.



Toyota uses all four. It is a pioneer in JIT.  Workplace organization includes Jidoka and JIT. Jidoka is concerned with developing excellent machine - man system. JIT is concerned with eliminating the waste or cost of work-in-progress or process (WIP) inventories.

Industrial Engineering - Productivity Improvement - Process Improvement - Product Redesign - Continuous Improvement


Industrial engineering is improvement in various elements of engineering operations to increase productivity. Along with engineering elements, industrial engineers evaluate and improve many other elements also as they are responsible for productivity and cost of items produced in a process. Through assignments of improving productivity and efficiency of information technology and software engineering processes, industrial engineers specializing in IT were given responsibility for business processes also. Thus industrial engineers with focus on various branches of engineering provide their services to companies and society to improve various elements of the products and processes on a continuous basis over the product life cycle. They are active in engineering or production-maintenance-service-logistic processes and business processes.

Productivity improvement always focuses on quality and flexibility issues as productivity improvement should not lead to any deterioration in quality or flexibility. Delivery and cost are always at the core of industrial engineering. Thus when QFCD paradigm came, that is attention to quality, flexibility, cost and delivery became prominent, many industrial engineers were given the responsibility of managing this function of continuous improvement.


______________

______________





Focus Areas of Industrial Engineering - Brief Explanation


Productivity Science: Science developed for each element of machine operation and each element of human tasks in industry.
Productivity Science - Determinants of Productivity

Product Industrial Engineering: Redesign of products to reduce cost and increase value keeping the quality intact.
Product Industrial Engineering


Process Industrial Engineering: Redesign of processes to reduce cost and increase value keeping the quality intact.
Process Industrial Engineering

Industrial Engineering Optimization: Optimizing industrial engineering solutions created in Product Industrial Engineering and Process Industrial Engineering.
Operations Research - An Efficiency Improvement Tool for Industrial Engineers

Industrial Engineering Statistics: Using statistical tools like data description, sampling and design of experiments in industrial engineering activity.
Statistics and Industrial Engineering

Industrial Engineering Economics: Economic analysis of industrial engineering projects.
Engineering Economics is an Efficiency Improvement Tool for Industrial Engineers


Human Effort Industrial Engineering: Redesign of products and processes to increase satisfaction and reduce discomfort and other negative consequence to operators.
Motion Study - Human Effort Industrial Engineering

Productivity Measurement: Various measurements done by industrial engineers in industrial setting to collect data, analyze data and use the insights in redesign: Product Industrial Engineering and Process Industrial Engineering.
Industrial Engineering Data and Measurements

Productivity Management: Management undertaken by industrial engineers to implement Product Industrial Engineering and Process Industrial Engineering. Management processes industrial engineering is also part of productivity management.
Productivity Management

Applied Industrial Engineering: Application of industrial engineering in new technologies, existing technologies, engineering business and industrial processes and other areas.
Applied Industrial Engineering - Process Steps

How many Industrial Engineers can a Company Employ for Cost Reduction?

For $100 million cost, there can be one MS IE and 6 BSIEs.
https://nraoiekc.blogspot.com/2020/03/value-creation-model-for-industrial.html

Industrial Engineering - Lean Manufacturing - Parent - Child Relationship


Toyota Motors - Industrial Engineering Activities and Jobs


Toyota Motors is the pioneer in JIT. Just in Time production that eliminates long term storage and short term delays in flow.

Toyota Motors enriched industrial engineering immensely. ASME standardized the process flow chart with two categories focusing on temporary delays on the shop floor and storage in stores or warehouses. It is the Toyota executives who reasoned that these two stages are costing money, but not adding any special value to the transformation of input materials into required product. They focused on this aspect to develop a flow production system that does not require inventory in the store or on the shop floor. Their quest led them to make improvements in the basic transformation operation/process, inspection operation, and material handling/transport operation. The improvements made to these three steps in process flow chart gave a competitive edge to Japanese production systems and they are appreciated with the term "World Class Manufacturing."

Toyota reports its cost improvement activities in its annual reports and investor presentations. Shigeo Shingo explained the role of industrial engineering in Toyota Motors and Toyota Production System in a book.

Industrial engineering is profit engineering - Taiichi Ohno


Development of Toyota’s unique IE-based kaizen method (T. Ohno, Toyota Production System, p. 71):

“IE [industrial engineering] is a system and the Toyota production system may be regarded as Toyota-style IE… Unless IE results in cost reductions and profit increases, I think it is meaningless.”
https://bobemiliani.com/toyotas-secret/

2018-19 Annual Report Presentation
TPS/Cost Reduction
Cost Reduction Efforts:  +80
Decrease in Expenses:   -165

Details:
Labor Costs -45.0
Depreciation -20.0
R&D Expenses +15.0
Other Expenses, etc. -115.0


Latest article on TPS

Ishigame K. (2020) Enhancing Learning Through Continuous Improvement: Case Studies of the Toyota Production System in the Automotive Industry in South Africa. In: Hosono A., Page J., Shimada G. (eds) Workers, Managers, Productivity. Palgrave Macmillan, Singapore
https://link.springer.com/chapter/10.1007/978-981-15-0364-1_9

Steps in Assistance to Suppliers
[1st Stage: 5S and Understanding Current Conditions]
1. Understanding material and information flows - Transport, delays and storage in Process flow chart.
Understanding production systems - Operations of machines, men and maintenance of machines
Finding problems and outstanding issues
2. Thorough 5S
3. First in, first out (FIFO)


[2nd Stage: Making Production Management Tool]
1. Prepare operation standards

  • Operation manuals  - Process - Machine operation, man operation
  • Quality check standards - Inspection operation
  • Machine maintenance manuals 

2. Prepare abnormality management tools

  • Operator placement map - Record abnormalities - Improve
  • Production performance board - Record abnormalities - Improve
  • Defect parts control  - Record abnormalities - Improve

3.Prepare key performance indicators (KPI)


[3rd Stage: Kaizen Activity]
Focus on improving

1. One-piece flow, SEIRYUKA (rectification of production flow)
2. Pull system, Fill-up system (Kanban system)
3. Heijunka production
4. Standardized work - Improvement of operations included in operation manual
5. Motion Kaizen, multi-skilled operator - Improvement in man's operations

Taiichi Ohno on Industrial Engineering - Toyota Style Industrial Engineering


A Study of the Toyota Production System from an Industrial Engineering Viewpoint - Shigeo Shingo

https://nraoiekc.blogspot.com/2012/04/study-of-toyota-production-system-from.html

Shigeo Shingo - Toyota Production System (TPS) - Industrial Engineering Principles and Practices

https://nraoiekc.blogspot.com/2020/03/shigeo-shingo-toyota-production-system.html


Toyota Production System - Use of  Industrial Engineering Principles and Methods - Shigeo Shingo

________________

________________

Toyota’s new $80 million engineering center in Kentucky
BY TOM EBLEN
OCTOBER 30, 2017
Lexington Herald-Leader
100 Midland Avenue
Lexington, KY 40508-1999
https://www.kentucky.com/news/business/article181684231.html

Toyota -  Industrial Engineers


Petro Nkosi
Industrial Engineer at Toyota South Africa
Johannesburg Area, South Africa
https://www.linkedin.com/in/petronkosi/

Mohale Mashatola
Senior industrial engineer at Toyota motor manufacuring South Africa
Durban Area, South Africa
https://www.linkedin.com/in/mohale-mashatola-ba4282bb/

Thifhelimbil Victor
Junior industrial Engineer at Toyota South Africa
Johannesburg Area, South Africa
https://www.linkedin.com/in/thifhelimbil-victor-53a741130/

NJABULO MADONDO
Industrial engineer at Toyota SA Motors
Durban Area, South Africa
https://www.linkedin.com/in/njabulo-madondo-12845b3a/

Lucky Velile Mhlongo
Industrial Engineer at Toyota Motor Manufacturing South Africa
Johannesburg Area, South Africa
https://www.linkedin.com/in/lucky-velile-mhlongo-18418b82/

Salisha Naidoo
Industrial Engineer, Business Process Analyst at Toyota Industrial Equipment
Johannesburg Area, South Africa

Mariz Bicongco
Industrial Engineer at Toyota Motor Philippines Corporation
Laguna, Calabarzon, Philippines
https://www.linkedin.com/in/marizbicongco/

Akpo A.
Industrial Engineer at Toyota Motor North America
Plano, Texas
https://www.linkedin.com/in/akpo-a-2946477/

Janelle Bedessy
Human Resources Business Partner at Toyota South Africa (Industrial Engineering and Post Grad BA Degree)
Durban Area, South Africa
https://www.linkedin.com/in/janelle-bedessy-4b904431/

Kwanele Buthelezi
Industrial Engineer at Toyota SA
Durban Area, South Africa
https://www.linkedin.com/in/kwanele-buthelezi-a1584615b/

João Ferreira
Toyota Caetano Portugal, S.A.
Company Name: Toyota Caetano Portugal, S.A
Industrial Engineer
Porto Area, Portugal
https://www.linkedin.com/in/jo%C3%A3o-ferreira-67b3664b/


09/02/2009 08:58

Author 3744  Ronald Turkett

Fujio Cho, Toyota's Chairman, noted that TPS was applied industrial engineering and common sense. For many years I have thought about his comments at the Georgetown, KY site and it still makes sense today. As an adjunct faculty member at the U of Michigan department of IOE I taught TPS in a class called Manufacturing Strategies.
https://www.lean.org/FuseTalk/forum/messageview.cfm?catid=44&threadid=4592

Ronald Turkett is a MSIE.
LEAN MANUFACTURING IMPLEMENTATION  Presentation
Ronald Turkett
1999


Toyota Industrial Engineering Job Advertisements




Industrial Engineer

Toyota Bacoor Cavite, Inc.
Cavite


Posted August 14, 2020

https://ph.joblum.com/job/industrial-engineer/267128

Job Description

The Job Controller’s / Industrial Engineer's general responsibility is to assist the foreman in the job loading and monitoring of technicians.
Functional Description of Position Responsibility:
Assist the foreman in updating and monitoring of the job with the use of the Job Progress Control Board,
Under a computerized set-up, the Job Coordinator also functions as the data encoder on the computer,
Updates the Daily Work Control Sheet, where the units received are logged and,
Accomplishes reports related to workshop operations
Determine daily available manpower capacity based on the total hours of the available Technicians
Record all repair orders onto dispatch log and determine the repair time required.
Distribute repair orders to the most appropriately skilled technician based on priority and completion time
Distribute repair orders with expected job completion time
Monitor and follow-up on work progress for each technician to insure completion on time
Indicate and record the incidences and cause of job stoppages
Record number of and causes of repeat repairs
Record number of and causes of carry overs
Prioritize waiting customers, repeat repairs and carry over work
Keep Service Advisors inform when no more work can be taken base on available hours.
Maintain accurate time keeping records by ensuring all technicians clock on and off all repair orders and day cards
Keep Service Advisors informed of job delays and any additional work required
Control the distribution of all sublet repairs
Coordinate with the parts department in preparing parts for the next repair orders to be worked
Efficient distribution of all repair orders
Authorized to dispute and monitor all repair work to the Technicians
Works in cooperation with the Foreman and Service Advisors to ensure full utilization of department capacity
Minimum Qualifications
Candidate must be a graduate of Industrial Engineering

 

Hiring Company
Toyota Bacoor Cavite, Inc.
Toyota Bacoor Cavite, Inc. was established on January 21, 2015 as a franchised dealer of automobile products and services distributed by Toyota Motor Philippines Corporation. 
https://ph.joblum.com/job/industrial-engineer/267128


Toyota Motor Manufacturing Canada

https://toyotamotorjobs.tmmc.ca/x/detail/a28fe4i9innl  (Accepting applications on 14 December 2020)

Engineering Analyst
Summary
Title: Engineering Analyst
ID: 1029B
Employment Group: Engineering
Location: Cambridge and Woodstock, ON

Toyota Motor Manufacturing Canada is committed to providing accommodations for applicants with disabilities; please advise us if you require an accommodation during the recruitment process.
Description
Toyota Motor Manufacturing Canada (TMMC) is a world-class automotive facility with manufacturing plants located in Cambridge and Woodstock, Ontario. Our plants currently manufacture the best-selling Toyota RAV4, RAV4 Hybrid and the Lexus RX 350 and RX 450h vehicles, and will also soon be building the popular Lexus NX and Lexus NX Hybrid models. Recognized year after year on the global stage for manufacturing quality by our customers, we are also recognized as one of Canada’s Top 100 Employers.

The world famous Toyota Production System, a philosophy of continuous improvement and on-going training, enables each Team Member to work towards their highest potential. The success of our company stems from hiring results-driven, self-motivated individuals, with the ability to work together to achieve team goals.

To promote a comfortable, safe and productive work environment, as well as to comply with all federal, provincial and/or local laws, TMMC is a smoke free property.

What we Offer:
Competitive salary, shift premiums and over-time pay rates, on top of base rate.
Exceptional Total Rewards Package
Training, development, and growth opportunities
Tuition Reimbursement Program
Free onsite fitness facility
Employee and family vehicle discounts
Social and team sport events 
Full service cafeterias including Tim Horton’s and Panago
 
Positions Available:
We are looking for Junior, Intermediate and Senior level Engineers candidates for multiple Engineering openings within various shops in our plants: Weld, Press, Assembly, and Paint/Plastics.

Overview of Engineering at TMMC:
Application of the Toyota Production System (TPS) to resolve production issues and help production achieve KPIs
Hands-on problem solving and critical thinking
Provide Technical Leadership for Project Management & Implementation
Use of engineering tools for Root Cause Analysis
Focus on Continuous Improvement
Work and collaborate with cross functional groups (quality, production, maintenance, contractors, suppliers, and management) 
 
Responsibilities:
Lead and perform root cause analysis on production, engineering, equipment and maintenance issues
Lead daily troubleshooting activities, provide solutions and support for process concerns or improvement
Coordinate and implement quality control objectives, activities and procedures to resolve production problems, maximize reliability and minimize costs
Perform Kaizen projects to improve safety, quality, productivity, efficiency and cost
Automation troubleshooting, new equipment installation and modifications
Process equipment evaluation, specifications, procurement and implementation
Ensure equipment and systems comply with relevant standards and legislation to ensure equipment safety and compliance
Co-ordination of external skilled trades / supplier /activities
Budget setting, forecasting and control
 
Desired Skills and Experience:
Engineering Degree. Mechanical, Manufacturing, Mechatronics, Electrical, Industrial backgrounds considered, P. Eng eligible
Minimum of 1 - 3 years of experience (co-op experience considered)
High volume manufacturing environment
Multi-disciplinary experience in process or equipment engineering
Experience in assembly plant manufacturing (automotive preferred)
Emphasis on manufacturing process and equipment
Automation experience is an asset
Knowledge and experience in the application of SPC (Statistical Process Control)
Technical experience/knowledge of torque control, production line control systems
Strong data analysis experience required
Must be proficient with MS Office, AutoCAD, 3D imaging software – SolidWorks or CATIA preferred and SAP is an asset
Excellent verbal and written communication skills
Strong leadership and technical skills
 
TMMC is an equal opportunity employer committed to building a diverse workforce. We believe in enabling people of different ages, sexes, sexual orientations, gender identities, gender expressions, colours, races, ancestries, citizenships, ethnic origins, places of origin, and creeds to work together and realize their full potential. TMMC is committed to compliance with all applicable legislation including providing accommodation for applicants with disabilities. Please advise us at any point during the recruitment and selection process if you require accommodation.


Updated on 29.7.2023,  27 August 2021, 29 July 2021,  14.12.2020,  15 July 2020
23 April 2020

Lean Manufacturing - World Class Manufacturing - Bibliography


2023

LEAN MANUFACTURING IMPLEMENTATION  Presentation
Ronald Turkett
1999


2020
Framing and Managing Lean Organizations in the New Economy
Darina Lepadatu, Thomas Janoski
Routledge, 18-Feb-2020 - Business & Economics - 276 pages
This book examines the dominance and significance of lean organizing in the international economy. Scholars from each discipline see lean production as positive or negative; the book blends theory with practice by sorting out these different academic views and revealing how lean is implemented in different ways.

The first part synthesizes academic research from a range of disciplines—including, engineering, sociology, and management—to present the reader with an integrated understanding of the benefits and drawbacks of lean management. The second part links this theory to practice, with a set of case studies from companies like Apple, Google, Nike, Toyota, and Walmart that demonstrate how lean is implemented in a variety of settings. The book concludes with three models, explaining how Toyotism, Nikefication with offshoring, and Waltonism provide full or less complete models of lean production. It clearly presents the positive and negative aspects of lean and insights into the culture of lean organizations.
https://books.google.co.in/books?id=Z2LRDwAAQBAJ


2018
The Battle for the Soul of Lean
by Michael Ballé
March 16, 2018
https://www.lean.org/LeanPost/Posting.cfm?LeanPostId=847
what is the soul of lean?

Chapter - Lean Manufacturing: Recent Trends, Research & Development and Education Perspectivies
S. Vinodh and R. Ben Ruben
https://books.google.co.in/books?id=wlb1CAAAQBAJ&pg=PA1#v=onepage&q&f=false

In:   Research Advances in Industrial Engineering
J. Paulo Davim
Springer, 04-May-2015 - Technology & Engineering - 118 pages
https://books.google.co.in/books?id=wlb1CAAAQBAJ

This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

See the preface in https://www.springer.com/in/book/9783319178240
The first sentence is:  "Industrial engineering is the branch of engineering that is concerned with "increasing productivity through the management of people, methods of business organization and technology" or in other words, "industrial engineering is human effort engineering and system efficiency engineering"".

Definition "Industrial engineering is human effort engineering and system efficiency engineering" was given by Narayana Rao K.V.S.S., Professor, National Institute of Industrial Engineering, Mumbai, India.

Prof. Rao developed and presented Principles of Industrial Engineering.


Lean Manufacturing - YouTube Video Play List
https://www.youtube.com/watch?v=AkP-HOBLsvk&list=PLzxiTolMU91UG69O-QfD0zxHeOo5SUo-U

___________________

___________________
Ian Johnson



Online Material maintained by Dr. Chao-Hsien Chu
___________________


Mail your comments and suggestions to: chu@ist.psu.edu.
 Framework for Achieving World Class Manufacturing.
 Awareness Revolution.
 5S: Fundations for Continuous Improvement.
 Visual Control.
 Modeling for JIT Production.
 Design of Manufacturing Cells.
 Balancing / Sequencing Mixed-Model Lines.
 SMED: Setup Reduction.



___________________

WCM by Yamashina - Resources

http://better-operations.com/2013/05/22/world-class-manufacturing-at-chrysler-and-fiat/


http://cdn.intechopen.com/pdfs/43383/InTech-Improving_operations_performance_with_world_class_manufacturing_technique_a_case_in_automotive_industry.pdf




updated on 29.7.2023,  9 April 2020,   5 May 2018,  11 July 2017, 3 December 2013

Thursday, July 27, 2023

Product Industrial Engineering - Bulletin Board


2023 

I am a happy. Prof. Beth Cudney, Ph.D, Professor of Data Analytics, Maryville University liked my comment. 
"Industrial engineering inputs to the product development process are important. Product industrial engineering makes significant contribution to product development."
on the post: 

2022

Stanley Black & Decker to slash SKUs, footprint in $1.5B savings plan

Published Aug. 1, 2022

https://www.supplychaindive.com/news/stanley-black-decker-supply-chain-transformation/628494/


The Company is embarking on a three-year journey to completely reshape its supply chain. By moving closer to customers, becoming more responsive to demand and enabling an agile innovation approach with shorter cycle times, the Company expects to deliver approximately $1.5 billion of cumulative cost savings.  To drive these efficiencies, the plan will focus on:

Leveraging strategic sourcing and contract manufacturing ($0.5 billion)

Consolidating facilities with a 30%+ reduction in manufacturing facilities from approximately 120 today ($0.3 billion)

Executing SBD Operating Model to deliver operational excellence through efficiency, simplified organizational design and inventory optimization ($0.4 billion)

Platforming products and implementing initiatives to drive a 40%+ SKU reduction ($0.3 billion).

https://markets.businessinsider.com/news/stocks/stanley-black-decker-reports-2q-2022-results-1031624855


Information on SKUs reduction also available in:

https://ir.stanleyblackanddecker.com/news-events/press-releases/news-details/2022/Stanley-Black--Decker-Reports-2Q-2022-Results/default.aspx









Product Industrial Engineering - Study Materials - Study Plan from 17 July to 26 July

Product Industrial Engineering

Product Industrial Engineering Module of Industrial Engineering Online Course Notes. Continuous Improvement of Product Design.   31 Lesson Module

I am a happy. Prof. Beth Cudney, Ph.D, Professor of Data Analytics, Maryville University liked my comment. 
"Industrial engineering inputs to the product development process are important. Product industrial engineering makes significant contribution to product development."
on the post: 

17 July

Product Industrial Engineering

Value Engineering - Introduction

18 July

Value Analysis and Engineering Techniques

Value Analysis: Approach and Job Plan

19 July

Knowledge Required for Value Engineering Application and Practice

Functional Analysis Systems Technique (FAST) - Value Engineering Method


22 July

Value Engineering - Examples, Cases and Benefits

Value Engineering in Construction - Structures, Roads, Bridges


23 July
Value Engineering at the Design and Development Stage - Tata Nano Example

Low Cost Materials and Processes - Information Board  - Database for Industrial Engineering and Value Engineering

24 July
Value Engineering - Bulletin - Information Board

Lean Product Development - Low Waste Product Development - Efficient Product Development


25 July
Design for Manufacturing

Design for Assembly

26 July

Target Costing and Industrial Engineering

Target Costing and Target Cost Management



ud. 27.7.203, 12.9.2022
pub. 16.7.2019

July - Gilbreth - Narayana Rao Month of Industrial Engineering and Productivity Management

INDUSTRIAL ENGINEERING is redesign (engineering) of Products, Facilities and Processes for Productivity increase.
Productivity Management Imperative for USA - McKinsey. Returning US productivity to its long-term trend of 2.2 percent annual growth would add $10 trillion in cumulative GDP over the next ten years (2023 - 2030).

INTRODUCTION TO MODERN INDUSTRIAL ENGINEERING. E-Book FREE Download. 


Global Number 1 Industrial Engineering Blog by Prof. Narayana Rao K.V.S.S. - Industrial Engineering Knowledge Center with FREE Online Industrial Engineering Course Notes

Principles of Industrial Engineering - 2017 IISE Pittsburgh Conference Presentation

_____________________


_____________________

Industrial Engineering Knowledge Center


Principles of Industrial Engineering

Kambhampati, Venkata Satya Surya Narayana Rao.  IIE Annual Conference. Proceedings; Norcross (2017): 890-895.

https://www.proquest.com/docview/1951119980


Productivity Science

 “Productivity science is scientific effort, that in any specific work situation, identifies the appropriate philosophy, culture, systems, processes, technology, methods and human physical action and behavior and elements of each of them,  that will maximize positive (social, environmental and economic) outcomes relative to the resources consumed.” - Narayana Rao.

in Frameworks for Productivity Science of Machine Effort and Human Effort - Narayana Rao. (Proceedings of the 2020 IISE Annual Conference, L. Cromarty, R. Shirwaiker, P. Wang, eds.)



Productivity Science of Machining - F.W. Taylor - Experiments and Results. PDF File. Free Download.

https://www.academia.edu/104259034/Productivity_Science_of_Machining_F_W_Taylor_Experiments_and_Results



Coca-Cola - A case study of total productivity management

Rao, K V S S Narayana.  Industrial Management; Mar/Apr 2021

https://www.proquest.com/docview/2528240678/FCCB88788F794CD5PQ/12



Frameworks for Productivity Science of Machine Effort and Human Effort

Rao, Kambhampati Venkata Satya Surya Narayana.IIE Annual Conference. Proceedings; Norcross (2020): 429-434.

https://www.proquest.com/openview/5786c4e6edff56abf808b4db26f083b3/1.pdf


Industrial Engineering 4.0 - Computer Aided Industrial Engineering: Work Systems Analysis in Industry 4.0

Rao, Kambhampati Venkata Satya Surya Narayana; Rathod, Aniket.  IIE Annual Conference. Proceedings; Norcross (2021): 49-54.

https://www.proquest.com/docview/2560888548


Functions and Focus Areas of Industrial Engineering.

Narayana Kvss.

2016, Udyog Pragati, Journal of NITIE, Mumbai, India

https://www.academia.edu/42302708/Functions_and_Focus_Areas_of_Industrial_Engineering



Top 0.5% of Publications of the month on Academia.Edu  

671 views

INTRODUCTION TO MODERN INDUSTRIAL ENGINEERING 

by Narayana Rao KVSS.

PDF 121 Pages. Free Download.    

https://www.academia.edu/103626052/INTRODUCTION_TO_MODERN_INDUSTRIAL_ENGINEERING_Version_3_0


2 Million Page Views in Blogger Statistics - 20 March 2023 - Industrial Engineering Knowledge Center Blog.

2 Million Page View Registered by Industrial Engineering Knowledge Center Blog on 20 March 2023.

https://nraoiekc.blogspot.com/2023/03/2-million-page-views-in-blogger.html


Principles of Work System Design

https://nraoiekc.blogspot.com/2020/10/principles-of-work-system-design.html


Industrial Engineering of Welding Processes

https://nraoiekc.blogspot.com/2019/04/industrial-engineering-of-welding.html


Business Process Industrial Engineering - New Industrial Engineering Area

https://nraoiekc.blogspot.com/2022/09/business-process-industrial-engineering.html


Supply Chain Industrial Engineering - Online Book

https://nraoiekc.blogspot.com/2012/09/supply-chain-industrial-engineering.html


Principles of Process Design

https://nraoiekc.blogspot.com/2023/05/principles-of-process-design.html


System Efficiency Engineering - Industrial Engineering

https://nraoiekc.blogspot.com/2019/07/system-efficiency-engineering.html


Production Industrial Engineering - Industrial Engineering of Production Processes

https://nraoiekc.blogspot.com/2023/04/production-industrial-engineering.html


I am a happy. Prof. Beth Cudney, Ph.D, Professor of Data Analytics, Maryville University liked my comment. 
"Industrial engineering inputs to the product development process are important. Product industrial engineering makes significant contribution to product development."
on the post: 



Birthdays - Industrial Engineers in July

7th July  Frank Gilbreth.

Contribution of Gilbreth to Industrial Engineering and Productivity Improvement

Frank B. Gilbreth: Industrial Engineering Achievements


MOTION STUDY - Frank B. Gilbreth - Part 1
MOTION STUDY: A METHOD FOR INCREASING THE EFFICIENCY OF THE WORKMAN
BY  FRANK B. GILBRETH

PREFACE
CHAPTER I

DESCRIPTION AND GENERAL OUTLINE OF MOTION STUDY

MOTION STUDY VARIABLES - Frank B. Gilbreth - Part 2
VARIABLES

I. Variables of the Worker.
II. Variables of the Surroundings, Equipment, and Tools
III. Variables of the Motion.

CHAPTER II  VARIABLES OF THE WORKER



MOTION STUDY VARIABLES - Frank B. Gilbreth - Part 3
VARIABLES OF THE WORKER - Continued.


MOTION STUDY VARIABLES - Frank B. Gilbreth - Part 4
CHAPTER III - VARIABLES OF THE SURROUNDINGS


MOTION STUDY VARIABLES - Frank B. Gilbreth - Part 5
CHAPTER IV -VARIABLES OF THE MOTION

MOTION STUDY VARIABLES - Frank B. Gilbreth - Part 6
CHAPTER IV -VARIABLES OF THE MOTION - Continued

FUTURE WORK FOR DEVELOPING MOTION STUDY - Frank B. Gilbreth - Part 7
CHAPTER V - PAST, PRESENT, AND FUTURE OF MOTION STUDY


Process Chart Method - Gilbreths - 1921

https://nraoiekc.blogspot.com/2020/06/process-charts-gilbreths-1921.html










Ud. 27.7.2023, 6.7.2023, 30.6.2023, 11.6.2023

Pub. 15.3.2023

Functions and Focus Areas of Industrial Engineering - Brief Explanation

New. Popular E-Book on IE,

Introduction to Modern Industrial Engineering.  #FREE #Download.

In 0.1% on Academia.edu. 3600+ Downloads so far.

https://academia.edu/103626052/INTRODUCTION_TO_MODERN_INDUSTRIAL_ENGINEERING_Version_3_0


Online Free Access Handbook of Industrial Engineering includes all modules of IE Online Course Notes.


Accompanying case study: Value Engineering of Paddy Transplanter

"Functions and Focus Areas of Industrial Engineering" - Paper Published in NITIE Journal dated Oct-Dec 2016. The journal was printed in June 2018.

https://www.academia.edu/42302708/Functions_and_Focus_Areas_of_Industrial_Engineering


Lesson 7. Industrial Engineering of Belt Drives by F.W. Taylor - 1893.

Functions of Industrial Engineering







----------------





________________________


The functions of management are currently given as Planning, Organizing, Resourcing, Executing and Control.

What are functions of Industrial Engineering (IE)?


Industrial engineering has the following functions:

Research in Industrial Engineering
Productivity Science
Productivity Engineering
Productivity Management
Communication, Training and Implementation
Productivity Measurement
Review



Research in Industrial Engineering


Industrial engineering has emerged out of shop management and scientific management developed and promoted by F.W. Taylor. Development of science related to production systems or work systems consisting of machines and men is the foundation for this subject. Hence research is an important function of industrial engineering. Industrial engineers are to be taught scientific research method and process so that they can understand the research papers published by IE researchers and also undertake research related to local applications.


Productivity Science


Research propositions and the tests of research propositions are to be consolidated into scientific theories related to various issues of interest in the field of industrial engineering.

Productivity Science of Machining - Taylor to Current Times

Productivity science of human effort - Development of Science in Mechanic Arts - F.W. Taylor

Productivity Science of Human Effort - F.W. Gilbreth


Productivity Engineering


Redesign of engineering processes to make them more productive is productivity engineering. The two important outputs of engineering processes are products or services and processes to produce those goods and services. Redesign of human actions also is part of productivity engineering. Productivity engineering is driven forward by productivity science. Improvement iterations take place within productivity engineering itself due to inventions taking place.

F.W. Taylor who is the father of productivity engineering of processes and L.D. Miles, father of productivity engineering of products strongly stated that productivity engineering has to maintain the effectiveness or quality of the basic engineering product or process designed by the design engineering team. Industrial engineering as theory and practice does not in any reduce the effectiveness or quality of the systems they are redesigning.


Productivity Management


Productivity management consists of activities of industrial engineers in the field of management. These activities have two objectives. One objective is to assess various management policies, programs and processes for the impact on productivity of engineering processes. Where they do not have desirable effects, industrial engineers have to propose redesign of them.

The second objective is the management of productivity in organizations. Industrial engineers are responsibility for managing the productivity. They have to plan for productivity improvement, organize for it, acquire resources for it, executive productivity improvement projects and activities and control them to achieve the planned goals.

Productivity science gives impetus for developing management methods that increase productivity. Thus productivity science is an input to productivity engineering and productivity management.



Communication, Training and Implementation


Industrial engineering is carried out as staff activity. The redesigns of the IE projects are to be communicated to various persons in the organization to establish its feasibility and also get them approved by competent authorities for funding. Then, industrial engineers have to train various persons in the new methods. Even though, they are a staff function, they have to be part of implementation teams and their work is not over till implementation is done.

Productivity Measurement


Measurement of productivity is an important function. After productivity improvement projects are implemented, measurements have to validate the improvement. Also past measurements or new measurements become the basis for planning productivity improvement programs.

Industrial Engineering Data and Measurements

Review


Based on the productivity measurements, a review of situation is to be made to take decisions regarding future efforts in the area of productivity. The results of review become the sources for further research, productivity engineering and productivity management activities.

Engineering Process - Review, Analysis and Improvement for Productivity


Principles of industrial engineering


The principles of industrial engineering proposed by Dr. K.V.S.S. Narayana Rao - Presented at the 2017 Annual Conference of Institute of Industrial and Systems Engineers (IISE) - at Pittsburgh, USA are the basis for deriving the functions of industrial engineering.

Industrial Engineering in All Branches of Engineering - Principle of Industrial Engineering

Industrial engineering defined as system efficiency engineering has application in all branches of engineering. Productivity improvement is needed in engineering systems of all branches and therefore industrial engineering needs to be used in all branches of engineering. It needs to be taught in all engineering branches.

One can see all functions of industrial engineering can be performed in engineering activities of all engineering branches. It is from the successful and effective application industrial engineering in all engineering branches that industrial engineers can go to other disciplines and initiate productivity improvement activities by involving specialists in those disciplines to investigate productivity improvement.

Focus Areas of Industrial Engineering


Productivity Science

Industrial Engineering Strategy (Added on 11 June 2022)

Facilities Industrial Engineering (Added on 11 June 2022) 

Product Industrial Engineering

Process Industrial Engineering

Industrial Engineering Optimization

Industrial Engineering Statistics

Industrial Engineering Economics

Human Effort Industrial Engineering

Productivity Measurement

Productivity Management

Data Processing and Information Systems for Industrial Engineering - Added on 16 July 2019

Applied Industrial Engineering

I am a happy. Prof. Beth Cudney, Ph.D, Professor of Data Analytics, Maryville University liked my comment. 
"Industrial engineering inputs to the product development process are important. Product industrial engineering makes significant contribution to product development."
on the post: 

Course Modules for Each Focus Area



Objectives of Basic Engineering and Industrial Engineering


Engineering has two aims: 
To develop effective products and processes that satisfy customers. 
To develop efficient products and processes that give profits and satisfaction to the producers (both managers-capitalists and employees). 
Industrial engineering is focused on efficiency while the functional engineers are focused on effectiveness. 
Both engineering streams have big data bases of knowledge, information and data that are to be used to do the design and execution work successfully to the satisfaction of customers.



Focus Areas of Industrial Engineering - Brief Explanation


Productivity Science: Science developed for each element of machine operation and each element of human tasks in industry.
Productivity Science - Determinants of Productivity

Industrial Engineering Strategy: 
Industrial engineering is profit engineering. If a company is not employing industrial engineering, it is unnecessarily foregoing profits inherent in the products that it developed and designed to the performance satisfaction of good number of users. Profit conscious managers and owners have to understand and employ industrial engineering to achieve the full profit potential of their products. Certain strategic decisions related to industrial engineering function are to be taken by top management of the organization as part of strategic plan of the organization. Certain strategic decisions are to be taken by the Chief Industrial Engineer. These decisions are part of the focus area of industrial engineering strategy.

Facilities Industrial Engineering:
The processes of different products and its components are performed using the facilities of the organization. In designing various facilities of industrial buildings and different facilities within the building, industrial engineering has a role to play. In selection of the equipment used by multiple processes industrial engineering has a role to play. Improvement of machines to increase productivity was done by F.W. Taylor, founder of industrial engineering. Maintenance of various equipment and its overhaul can also be examined by industrial engineers as part of facilities industrial engineering. Layout of the equipment and various production departments decide the amount of material handling and transport within the facility. Layout improvement is an important task of industrial engineering.  Hence facilities level industrial engineering  or facilities industrial engineering is to be identified as an important area in industrial engineering.

Product Industrial Engineering: Redesign of products to reduce cost and increase value keeping the quality intact.
Product Industrial Engineering


Process Industrial Engineering: Redesign of processes to reduce cost and increase value keeping the quality intact.
Process Industrial Engineering

Industrial Engineering Optimization: Optimizing industrial engineering solutions created in Product Industrial Engineering and Process Industrial Engineering.
Operations Research - An Efficiency Improvement Tool for Industrial Engineers

Industrial Engineering Statistics: Using statistical tools like data description, sampling and design of experiments in industrial engineering activity.
Statistics and Industrial Engineering

Industrial Engineering Economics: Economic analysis of industrial engineering projects.
Engineering Economics is an Efficiency Improvement Tool for Industrial Engineers


Human Effort Industrial Engineering: Redesign of products and processes to increase satisfaction and reduce discomfort and other negative consequence to operators.
Motion Study - Human Effort Industrial Engineering

Productivity Measurement: Various measurements done by industrial engineers in industrial setting to collect data, analyze data and use the insights in redesign: Product Industrial Engineering and Process Industrial Engineering.
Industrial Engineering Data and Measurements

Productivity Management: Management undertaken by industrial engineers to implement Product Industrial Engineering and Process Industrial Engineering. Management processes industrial engineering is also part of productivity management.
Productivity Management

Applied Industrial Engineering: Application of industrial engineering in new technologies, existing technologies, engineering business and industrial processes and other areas.



Industrial Engineering Free Online Course Notes for Each Focus Area

Modules  of Industrial Engineering ONLINE Course


Modules

Principles of Industrial Engineering - Taylor - Narayana Rao - Presentation in 2017 IISE Annual Conference - Pittsburgh, USA.

___________________

___________________


Compare and find the agreement of many scholars, departments of industrial engineering with the above explanation


University of Pretoria
http://www.up.ac.za/en/industrial-and-systems-engineering/article/45515/the-industrial-engineering-profession




Updated  27.7.2023, 6.6.2023, 11.6.2022, 27.4.2022,  11 Nov 2021,    21 March 2021,  16 July 2019,   9 June 2018
Published 25 July 2017

Product Industrial Engineering for Cost Reduction - L.D. Miles

Ubiquity of Industrial Engineering Principle of  Industrial Engineering

Industrial Engineering is applicable to all branches of engineering. - Engineering products of all engineering branches can be improved and cost is reduced using product industrial engineering methods.

Lesson 37 of  Industrial Engineering ONLINE Course

Lesson 38 -  L.D. Miles - 13 Value Analysis and Engineering Techniques


              Narayana Rao K.V.S.S. on Cover Page of Business Today 
October 22 - November 6, 1997




                                          
Lesson 37 of Industrial Engineering ONLINE Course


Product Industrial Engineering. 
Methods: Value Engineering & DFAM.
Product Industrial Engineering Programs:  Design To Value/Design For Value (DTV), Design to Cost, Target Costing & Lean Product Development.

Product Industrial Engineering - Course Notes


Product Industrial Engineering

27.7.2023
I am a happy. Prof. Beth Cudney, Ph.D, Professor of Data Analytics, Maryville University liked my comment. 
"Industrial engineering inputs to the product development process are important. Product industrial engineering makes significant contribution to product development."
on the post: 


'Product Industrial Engineering' is industrial engineering of products. It is continuous improvement of product to reduce its cost. Cost reduction as an important activity of engineering and engineers was advocated by the first president of ASME in 1880.  Taylor developed the method of studying and improving engineering elements based on cost data, productivity data and time measurement to reduce the cost of process to produce engineering products. Many others including Gilbreth, Maynard contributed to the development of this process productivity improvement.

C.B. Going and Hugo Diemer actually defined industrial engineering in detail first. The treatments they give is slightly different. Going emphasized the efficient conduct of the industrial organization. Diemer emphasized the factory should give a measured output with lot of certainty. Diemer presented the standardization view of the scientific management as industrial engineering focus. Both have traced industrial engineering to Taylor only. Industrial engineering is standardization (designing and planning) of factory processes so that a planned output can be delivered based on standard operating processes, equipment, working conditions, method, and motions with specified standard time. Diemer in his books in the field of industrial engineering and management wrote in detail about standardization and time and motion study.

The contribution of L.D. Miles is in the area of cost reduction of products.. He is very clear in the focus of the method that he had developed - cost reduction. But his line of attack is primarily on product design and the inefficiencies that exist in it in its synthesis. He saw an opportunity to redesign it later in the product life cycle based on an analysis of its function and alternatives available in the technology and supply market. He identified two phases in his method. Value Analysis and Value Engineering. Value analysis identifies  cost reduction opportunity for redesign. Value engineering phase redesign the part and the product in the direction indicated by value analysis.  We can see similar phases in productivity also - productivity analysis and productivity engineering.


_________

 _________


While value analysis and engineering is actually productivity analysis and engineering, industrial engineering discipline might have neglected Miles contribution for a long period and forced Miles to start new society to promote value engineering. But it is quiet clear that value engineering is an outgrowth of industrial engineering philosophy of cost reduction by redesign of engineering products and processes. The place of Miles is on the same pedestal as that of F.W. Taylor in industrial engineering. Value engineering attained a great success and even now a popular method. Shigeo Shingo specially made value engineering as a first step in industrial engineering in Japanese practice.

Product Design Efficiency Engineering - Component of Industrial Engineering
(Functions and Focus Areas of Industrial Engineering)

Value Analysis and Value Engineering - Miles Way (L.D. Miles)


Value engineering has for its purpose the efficient identification and elimination of unnecessary cost. First article on the topic was written by L.D. Miles in 1949.

Value Engineering - Introduction - Video Presentation
__________________



__________________
________________________________________________________________

What is Value Engineering?

Value engineering has for its purpose the efficient identification of unnecessary cost, i.e., cost which provides neither quality nor use nor life nor appearance nor customer features. It focuses the attention of engineering, manufacturing, and purchasing on one objective – equivalent performance for lower cost. It results in the orderly utilization of low cost alternative materials, low cost alternative processes including new processes, and abilities of specialized suppliers to procure items at lower costs.

Lawrence D. Miles is the pioneer of this technique. He wrote the book - Techniques of Value Analysis and Engineering - in 1961. His designation at that time was Manager, Value Service, General Electric Company. He published the first article on value analysis in 1949 in American Machinist.

Functional design is not tampered:
Inherent in the philosophy of value engineering is the full retention for the customer of the usefulness and esteem features of the product. Miles argued emphatically right at the beginning of his book, “Techniques of Value Analysis and Engineering” that identifying and removing unnecessary cost, and thus improving the value, must be done without reducing in the slightest degree quality, safety, life, reliability, dependability, and the features and attractiveness that the customer wants.

What is Value?

Miles described  four types of value.

1. Use value: The properties and qualities which accomplish a use, work, or service.
2. Esteem value: The properties, features, or attractiveness which cause us to want to own it.
3. Cost value: The sum of labor, material, and various other costs required to produce it.
4. Exchange value: Its properties or qualities which enable us to exchange it for something else we want.

Miles is clear that  value analysis and  engineering are  concerned with cost value without in anyway decreasing the use value, esteem value and exchange value.




Miles gave job plan as the procedure for value analysis. Miles clearly wrote in his book, he is primarily describing value analysis only in the book. He is not attempting to discuss how engineering knowledge will be used to redesign the product. He has left that work industrial engineering discipline to develop the method of redesigning parts and products based on the new concept for product redesign. In process or operation improvement or part improvement, engineering is essential and industrial engineers have to do engineering. There is analysis to find the basis for reengineering. That is the first phase. Both Going and Emerson discussed the first phase and importance.
 

Job Plan for Value Engineering

Phase 1. Orientation: Understand the customers’ needs and wants. Understand the functions performed by the product and the contribution of each part and each feature of the part and the complete product to the functions to be performed by the product.

Value engineer has to make sure that he does not diminish the contribution of the product to the customers' needs and wants.

Phase 2. Information: Collection of information on quantities, vendors, drawings, materials, manufacturing methods, and costs.


Phase 3. Speculation: Using all the techniques of value analysis to come out with alternative low cost materials and methods to produce components and the product. Creativity is to be employed here. Value engineer has to involve experts from various disciplines to help with ideas.

Blast, create and refine are the steps used in this step.

Blast
For each function to be performed by a product or a component, find alternative products, materials or processes that serve the function to a great extent but at a less cost. These alternative ideas do not satisfy the specified or required function completely but they do to a significant extent. Identify they function they perform and the cost involved,



Create

In create phase, the technique of "Use real creativity" needs to be employed to come out with ways by which the low cost alternatives identified during the blast stage can be modified to accomplish the specified function to a much greater extent with pertinent increase in cost. During this stage also the improvement in function and the increase in cost are to be clearly identified.

Refine

In this step, much more creativity is used and also the techniques "Use industry experts to extend specialized knowledge" and  "Utilize and pay for vendors’ skills and knowledge" are used to refine the ideas developed during the create step to come out with a refined alternative that fully accomplishes the specified function at a lower cost. During refine step, some more functionality is added as well as some additional cost.

Phase 4. Analysis:  Technical and cost analysis of the alternative proposed. Identifing  and overcoming roadblocks is important here.

Phase 5. Program planning: Approach the specialists to further refine the selected alternatives. Inform the specialists the accepted suggestions and give mandate to them to take steps to implement the suggestions.

Phase 6. Program execution: Pursue regularly the specialists and vendors to get their inputs on various tasks assigned to them. The output of this phase is a detailed design, successful trail  pilot  run of a manufacturing process or  a confirmed estimate from a vendor for supplying a component, material or sub assembly.

Phase 7. Status summary and conclusion. The results of the value engineering study are to be presented to decision makers. The reports needs to have a summary sheet as well as the full supporting documentation.  The value engineering project is concluded when the product is manufactured and distributed at the lowered cost as per the value engineering study.

Special Knowledge Required


In practically all fields, the operator used special tools and special or field specific knowledge. Value analysis and engineering is no exception.

Reach of knowledge: For value analysis, the knowledge required is extremely broad.
Nature of knowledge: Information on materials, processes,  and functional products.
Form and Constitution of Knowledge Fund: Handbooks, catalogues, charts, price lists, product and process descriptions, tables etc.
Listing of specialized Competence: Value analysis requires consulting specialists and specialized sources. So a list of consultants as well as special publication is required for various materials, processes and components.


The specialized knowledge required in value improvement work consists of information on materials, processes, functional products, sources of functional knowledge, approaches to function performance, and practical ideas for economical function performance.

It is important that the value engineer’s library of special knowledge contains a comprehensive volume of trade knowledge backed by efficient means for a quick recall of needed information. Value engineer also needs well-organized references to a maximum number of persons of special skills that may be consulted in connection with each problem.

Value engineers need develop a database having the association between properties of materials and costs apart from material and its cost. Similarly a database that shows the relationship between the properties of products produced by various processes and the cost of each process, including the material used is also valuable.


This topic will be discussed in more detail in a separate article 'Knowledge Required for Value Engineering'.
   

Qualifications and Training for Value Analysts and Engineers


Qualifications: Logic, creativity, ability to make rapid searches, recall, ability to quickly sort out useful information,  synthesis of solutions, selection of promising alternatives.

Knowledge: Understanding of the properties of materials, and of manufacturing processes, their potentialities, and their limitations.

Traits required: Imagination, initiative, self-organization, cooperative attitude,
Attitude: belief in the importance of value

Training: Three weeks class room followed by six months of practical work.
Another round of three weeks class room followed six months of practical work
Another round of three weeks.
 

In addition to the job plan based on function definition and function based alternatives finding, Miles gave 13 additional techniques. Some of these techniques part of process industrial engineering already in use in Miles time.


Value Analysis Techniques


  1. Avoid generalities
  2. Get all available costs
  3. Use information from the best source
  4. Blast create and refine
  5. Use real creativity
  6. Identify and overcome roadblocks
  7. Use industry experts to extend specialized knowledge
  8. Get a dollar sign on key tolerances
  9. Utilize vendors’ available functional products
  10. Utilize and pay for vendors’ skills and knowledge
  11. Utilize specialty processes
  12. Utilize applicable standards
  13. Use the criterion, “would I spend my money this way?”

Value Analysis Techniques - Video Presentations
________________



Play List - All 13 Value Analysis Techniques
https://www.youtube.com/watch?v=BHH-QZ29EOo&list=PL6W3qaSriFEgzI80uqu4ygW5jJsDCCyJf
________________

More detailed description of techniques



For further study:

First article by L.D. Miles in 1949  http://minds.wisconsin.edu/handle/1793/3948 download the file 35.5 pdf from this page.
 

Lawrence D. Miles, Techniques of Value Analysis and Engineering, McGraw-Hill Book Company, New York 1961.





Related Articles



Industrial Engineering Knowledge Revision Plan - One Year Plan


January - February - March - April - May - June

July - August - September - October - November - December


Value Engineering is a Subject in the following IE Programmes

EM 627  University of New Haven
http://catalog.newhaven.edu/preview_program.php?catoid=3&poid=332

IE 6220 Wayne State University
https://engineering.wayne.edu/ise/syllabi.php


Updated 27.7.2023, 7 July 2021
Pub 23 June 2020