Wednesday, August 10, 2016

Design for Assembly (DFA)

Design for Manufacturing






Basic DFA Guidelines




Minimise part count by incorporating multiple functions into single parts
Modularise multiple parts into single subassemblies
Assemble in open space, not in confined spaces; never bury important components
Make parts such that it is easy to identify how they should be oriented for insertion
Prefer self-locating parts
Standardise to reduce part variety
Maximise part symmetry
Design in geometric or weight polar properties if nonsymmetric
Eliminate tangly parts
Color code parts that are different but shaped similarly
Prevent nesting of parts; prefer stacked assemblies
Provide orienting features on nonsymmetries
Design the mating features for easy insertion
Provide alignment features
Insert new parts into an assembly from above
Eliminate re-orientation of both parts and assemblies
Eliminate fasteners
Place fasteners away from obstructions; design in fastener access
Deep channels should be sufficiently wide to provide access to fastening tools; eliminate channels if possible
Provide flats for uniform fastening and fastening ease
Ensure sufficient space between fasteners and other features for a fastening tool
Prefer easily handled parts

http://deed.ryerson.ca/~fil/t/dfmdfa.html

http://homepages.cae.wisc.edu/~me349/lecture_notes/me349_dfa_lecture_notes.pdf




Case Studies

http://www.dfma.com/resources/studies.htm

Motorola University Teaches Smarter, Faster Product Designs - Laptop DFA
http://www.dfma.com/news/motorola.htm


Boothroyd and Dewhurst’s DFA Software Drives Cost Savings for Motorola's DS9208 Scanner
Presented by: Chris Foley
At the International Forum on Design For Manufacture and Assembly
June 13-15, 2011, Providence, Rhode Island, USA
http://www.dfma.com/resources/motorola.htm

Simplifying Veterinary Device Relieves Maturing Product Symptoms
DFMA guides IDEXX subassembly redesign, radically reducing parts, weight, assembly time, and cost
http://www.dfma.com/resources/idexx.htm


DESIGN FOR ASSEMBLY: A CRITICAL METHODOLOGY FOR PRODUCT
REENGINEERING AND NEW PRODUCT DEVELOPMENT
MOHAN V . TATIKONDA, CFPIM
Kenan-Flagler Business School, University of North Carolina, Chapel Hill, NC 27599
PRODUCTION AND INVENTORY MANAGEMENT JOURNAL-First Quarter, 1994


http://nptel.ac.in/courses/112101005/20


Product Design Efficiency Engineering - Component of Industrial Engineering


Updated  13 August 2016, 27 June 2016

No comments:

Post a Comment