Industrial Engineering is System Efficiency Engineering. It is Machine Effort and Human Effort Engineering. 2.60 Million Page View Blog. 200,000+ visitors. (17,000+ visitors in the current calendar year)
Blog Provides Industrial Engineering Knowledge: Articles, Books, Case Studies, Course Pages and Materials, Lecture Notes, Project Reviews, Research Papers Study Materials, and Video Lectures.
Blog provides full IE Online Course Notes
Industrial engineers (IE) are employed and productivity improvement and cost reduction are practiced in many companies using IE philosophy, principles, methods, techniques and tools.
Frederick Taylor established the first department in factory doing industrial engineering work of process improvement for increase in productivity and cost reduction. The name he gave it to the department is "Elementary Rate Fixing." Its function is to breakdown the process into elements and find the best way of doing each by observing number of persons doing the same element and finding the best way through time study. The next step is to find science behind the way of doing the elements. Then from the best ways of doing each element, a new process is developed and the operators are trained in it. The final step of rate fixing refers to specifying the time required to do each element and the piece rate for it. The Piece rate of a component is fixed by first developing the detail at element level. The operators are provided the instruction sheet at the element level so that they know the time specified for each element and make effort to do it in that time. Taylor stated that operators are motivated to do well when they know the goal clearly and receive feedback quickly. The elementary rate fixing department has the responsibility to develop productivity science, do productivity engineering and do productivity management.
Based on the statements of Taylor, we can say elementary rate fixing department was established in 1885 by Taylor.
The Call for Cost Reduction by Engineers - ASME President - 1880
The first president of ASME in his presidential address in 1880 exhorted mechanical engineers to understand the relation between elements of engineering design and production and elements of cost accounting that determine the production cost as well as the life cycle cost of engineering items. Even though attention to cost was given by civil engineers earlier, the call by ASME president led to the emergence of a branch/discipline of engineering termed "Industrial Engineering."
The concern for management and productivity issues occupied the attention of the first ASME president. Thus ASME's attention to the topic is there right from its founding . In fact, R.H. Thurston the first ASME president, in his inaugural address (1880), included productivity improvement and economy among the objects of the society in his inaugural address.
"We are now called upon to do our part in the work so well begun by our predecessors, and so splendidly carried on by our older colleagues during the past generation. We have for our work the cheapening and improvement of all textile fabrics, the perfecting of metallurgical processes, the introduction of the electric light, the increase of facilities for rapid and cheap transportation, the invention of new and more efficient forms of steam and gas engines, of means for relieving woman from drudgery, and for shortening the hours of labor for hard-working men, the increase in the productive power of all mechanical devices, aiding in the great task of recording and disseminating useful knowledge; and ours is the duty to discover facts and to deduce laws bearing upon every application of mechanical science and art in field, workshop, school, or household." - Thuston.
R. H. Thurston. President's inaugural address. Transactions ASME, 1, 1880, pp. 14-29.
Pennsylvania State College, USA introduced the first industrial engineering major in 1907. Hugo Diemer was the faculty who introduced it. He authored a book in 1911 which he explained the role of industrial engineering. Principles of Industrial Engineering, a book in industrial engineering by Charles B. Going was published in 1911. Charles taught industrial engineering subject in a module on works management organized at Columbia University by Prof. Walter Rautentruanch.
James Gunn is given the credit for using the term "industrial engineer" first in an article in 1901. He wanted a new engineer to emerge "production" or "industrial". The "industrial" or "production" engineer of Gunn understands the cost accounting and cost analysis in relation to engineering activities. The term industrial engineer appealed to some. Subsequently the course in industrial engineering was also started. Even production engineering emerged as a separate branch that focused much more on the technical function of creating process plans, instructing and training operators. The focus of industrial engineering became productivity, efficiency and cost reduction.
INDUSTRIAL ENGINEERING PHILOSOPHY
I would like to state the philosophy of industrial engineering as "engineering systems can be redesigned or improved and installed periodically for productivity increase or improvement." The primary drivers of productivity improvement are developments in basic engineering disciplines and developments in industrial engineering (developments in productivity science, productivity engineering and productivity management). The additional drivers are developments in related disciplines, for example, economics, mathematics, statistics, optimization techniques, ergonomics, psychology and sociology etc. - Narayana Rao, 1 April 2021.
Background for Development of Industrial Engineering
The late-nineteenth-century factory initially was a collection of skilled machinists and mechanical artisans working in a big work areas based on their skills. The management of production activity was basically done a first-line supervisor, the foreman. He organized materials and labor, directed machine operations, recorded costs, hired and fired employees, and basically the principal production management. The manager or general manager above him looked after external issues related to supplies of goods and services.
In the 1870s and 1880s, critics began to attack the model of the factory wherein each operator worked according his personal methods and mostly worked under a piece rate system. Their critique became the basis for the best-known effort to encourage coordination within the firm during the first half of the twentieth century under production manager. Shop Management theory and practice was proposed by F.W. Taylor. The changes in management that occurred during period were known under various labels - systematic management, scientific management, efficiency engineering. As stated above, in 1901, the term "industrial engineering" was proposed and in 1908, it became a course, and a branch of engineering. Shop Management and subsequent books fostered greater sensitivity to the manager’s role in production and led to greater diversity in industrial practice also as managers selectively implemented ideas and techniques.
The attack on traditional factory management originated in two late-nineteenth-century developments. The first was the maturation of the engineering profession, based on formal education and mutually accepted standards of behavior and formally educated engineers embraced scientific experimentation and analysis in place of sporadic developments based on experience. The second development was the rise of systematic management, an effort among engineers and sympathizers to substitute system for the informal methods that had evolved with the factory system. The factories replaced traditional managers who focused less on production methods with engineers and managerial systems replaced guesswork and ad hoc evaluations. By the late 1880s, cost accounting systems, methods for planning and scheduling production and organizing materials, and incentive wage plans were developed. Their objective was an unimpeded flow of materials and information. Systematic management sought to extract the efficiency benefit required to run a factory by developing science for each work element. It also developed planning systems that helped in realizing the organization's goals through work of managers and operators. It promoted decisions based on performance by giving wages based on merit rating and incentives based on quantity of output rather than on personal qualities and relationships.
Contribution of F.W. Taylor
In the 1890s, Frederick Winslow Taylor, became the most vigorous and successful proponent of systematic management. As an executive in production engineering and management, he introduced factory accounting (cost accounting) systems and based on those records made engineering changes in systems that gave lower cost of operation and production. Taylor explained his systems through papers and discussions in meetings of American Society of Mechanical Engineers (ASME). The systems and practices developed by Taylor permitted engineers and managers to use operating records to guide their engineering and production management actions. Taylor focused on reducing metal cutting times through various engineering improvements to increase productivity of machines. The improvements include use of cutting fluids, higher power in the machines for increasing feed, development of high speed steel, development of tool life equation and many more improvements. Taylor estimated the time required for taking each cut and reduced the time taken by improvement in cutting speed, feed and depth of cut.
Taylor also advocated production control systems that allowed managers to know more precisely what was happening on the shop floor, piece-rate systems that encouraged workers to follow orders and instructions, and various related measures. Taylor developed time study of elements to measure time taken by machines and men to perform various tasks done by operators. Data collected from multiple machines and multiple operators were used to identify ways of working that gave minimum times.
Frederick Taylor established the first department in factory doing industrial engineering work of process improvement for increase in productivity and cost reduction in 1885. The name he gave it to the department is "Elementary Rate Fixing." Its function is to breakdown the process into elements and find the best way of doing each by observing number of persons doing the same element and finding the best way through time study. The next step is to find science behind the way of doing the elements. Then from the best ways of doing each element, a new process is developed and the operators are trained in it. The final step of rate fixing refers to specifying the time required to do each element and the piece rate for it. The Piece rate of a component is fixed by first developing the detail at element level. The operators are provided the instruction sheet at the element level so that they know the time specified for each element and make effort to do it in that time. Taylor stated that operators are motivated to do well when they know the goal clearly and receive feedback quickly. The elementary rate fixing department has the responsibility to develop productivity science, do productivity engineering and do productivity management.
In 1895, he employed a colleague, Sanford E. Thompson, to help him determine the optimum time to perform industrial tasks; their goal was to compute, by rigorous study of the worker’s movements and the timing of those movements with stopwatches, standards for skilled occupations that could be published and sold to employers.
Between 1898 and 1901, as a consultant to the Bethlehem Iron Company, Taylor introduced all of his systems and vigorously pursued his research on the operations of metal-cutting tools. Taylor’s discovery of high-speed steel in 1900, which improved the performance of metal-cutting tools, assured his fame as an inventor. In his effort to introduce systematic methods in many areas of the company’s operations, Taylor developed an integrated view of managerial innovation and a broader conception of the shop/production manager’s role. In 1901, when he left Bethlehem, Taylor resolved to devote his time and ample fortune to promoting his new conception of industrial management. In the paper, Shop Management ( 1903), he portrayed an integrated complex of systematic management methods and also productivity improvement of machine shops.
In the following years, he began to rely more heavily on anecdotes from his career to emphasize the links between improved management and greater productivity. Second, Taylor tried to generalize his management principles to more areas of work. Between 1907 and 1909, with the aid of a close associate, Morris L. Cooke, he wrote a sequel to Shop Management that became The Principles ofScientific Management (1911). Taylor came out with four principles and relied on colorful stories from his experience and language to illuminate “principles” of management. To suggest the integrated character and broad applicability of scientific management, he equated it to a “complete mental revolution.”
Taylor had fashioned scientific management from systematic management. The two approaches were intimately related. Systematic and scientific management had common roots, attracted the same kinds of people, and had the same business objectives. Yet in retrospect the differences stand out. Systematic management was diffuse and utilitarian, a series of isolated measures that did not add up to a larger whole or have recognizable implications beyond day-to-day industrial operations. Scientific management added significant detail and a larger view.
The Principles extended the potential of scientific management to nonbusiness endeavors and made Taylor a central figure in the efficiency movement of the 1910s. To engineers and nonengineers alike, he created order from the diverse prescriptions of a generation of technical writers. By the mid-l910s, he had achieved wide recognition in American engineering circles and had attracted a devoted following in France, Germany, Russia, and Japan. Pennsylvania State College introduced the first industrial engineering major in 1907 and promoted the thinking of Taylor.
Taylor's insistence that the proper introduction of management methods required the services of an expert intermediary helped in the emergence of industrial engineering independent consultants and accelerated the rise of a new profession.
Initially, the spread of systematic management occurred largely through the work of independent consultants, a few of whom, such as the accountant J. Newton Gunn, achieved prominence by the end of the nineteenth century. By 1900, Taylor overshadowed the others; by 1910, he had devised a promotional strategy that relied on a close-knit corps of consultants to install his techniques, train the client’s employees, and instill a new outlook and spirit of cooperation. The expert was to ensure that the spirit and mechanism of scientific management went hand in hand. This activity of Taylor produced a number of successful consulting firms and the largest single cluster of professional consultants devoted to industrial management.
Between 1901 and 1915, Taylor’s immediate associates introduced scientific management in nearly two hundred American businesses, 80 percent of which were factories Some of the plants were large and modern, like the Pullman and Remington Typewriter works. Approximately one-third of the total were large-volume producers for mass markets. A majority fell into one of two broad categories. First were those whose activities required the movement of large quantities of materials between numerous workstations (textile mills, railroad repair shops, automobile plants). Their managers sought to reduce delays and bottlenecks and increase throughput.
The records available suggest that the consultants provided valuable services to many managers. They typically devoted most of their time to machine operations, tools and materials, production schedules, routing plans, and cost and other record systems. Apart from installing features of systematic management, their most notable activity was to introduce elaborate production-control mechanisms (bulletin boards and graphs, for example) that permitted managers to monitor operations
Between 1910 and 1920, industrial engineering spread rapidly. Large firms introduced staff departments devoted to production planning, time study, and other industrial-engineering activities and consulting firms also developed further. By 1915, the year of Taylor’s death, professional organization, the Taylor Society founded in 1910 was active. Western Efficiency Society was founded in 1912. The Society of Industrial Engineers was founded in 1917. These societies provided forums for the discussion of techniques and the development of personal contacts. Financial success and professional recognition increasingly depended on entrepreneurial and communications skills rather than technical expertise alone. A new generation of practitioners, including many university professors developed successful consulting practices.
Contributions of Gilbreth, Emerson and Bedaux
Competition for clients and recognition, especially after the recession of 1920-21 made executives more cost-conscious-produced other changes. Some industrial engineering consultants began to seek clients outside manufacturing. Spurred by the growing corps of academicians who argued that the principles of factory management applied to all businesses, they reorganized offices, stores, banks, and other service organizations. A Society of Industrial Engineers survey of leading consulting firms in 1925 reported that many confined their work to plant design, accounting systems, machinery, or marketing . A third trend was an increasing preoccupation with labor issues and time study. This emphasis reflected several postwar developments, most notably and ominously the increasing popularity of consultants who devoted their attention to cost cutting through the aggressive use of time study.
By the early 1920s, industrial engineers had divided into two separate and increasingly antagonistic camps. One influential group of industrial engineers, centered in the Taylor Society, embraced personnel management and combined it with orthodox industrial engineering to form a revised and updated version of scientific management. A handful of Taylor Society activists, Richard Feiss of Joseph & Feiss, Henry S. Dennison of Dennison Manufacturing, Morris E. Leeds of Leeds & Northrup, and a few others, mostly owner-managers, implemented the new synthesis. They introduced personnel management and more controversial measures such as profit sharing, company unionism, and unemployment insurance that attacked customary distinctions between white- and blue-collar employees and enlisted the latter, however modestly, in the management of the firm.
A larger group emphasized the potential of incentive plans based on time and motion study and disregarded or deemphasized the technical improvement. Their more limited approach reflected the competition for clients, the trend toward specialization, and the continuing attraction of rate cutting. Indicative of this tendency was the work of two of the most successful consultants of the post- 1915 years, Harrington Emerson and Charles E. Bedaux. This led to the development of a major weakness in Industrial Engineering. Industrial engineers got the description of "Time Study Men."
Harrington Emerson
Emerson (1853-1931) was a creative personality. Attracted to Taylor at the turn of the century, he briefly worked as an orthodox practitioner and played an influential role in Taylor’s promotional work. He soon became a respected accounting theorist and a successful reorganizer of railroad repair facilities. As his reputation grew, however, he broke with Taylor and set up a competing business with a large staff of engineers and consultants. Between 1907 and 1925, he had over two hundred clients He also published best-selling books and promoted a mail-order personal efficiency course. He was probably the best-known industrial engineer of the late 1910s and early 1920s.’ Emerson’s entrepreneurial instincts defined his career. An able technician, he was capable of overseeing the changes associated with orthodox scientific management. He also recruited competent assistants, such as Frederick Parkhurst and C. E. Knoeppel, who later had distinguished consulting careers, and E. K. Wunnerlund, who became the head of industrial engineering at General Motors. But Emerson always viewed his work as a business and.tailored his services to this customer’s interests. In practice, this meant that his employees spent most of their time conducting time studies and installing incentive wage systems. By the mid-1920s, General Motors, Westinghouse, the Baltimore & Ohio Railroad, Aluminum Company of America, American Radiator, and many other large and medium-sized industrial firms had introduced the Emerson system and in many cases an industrial engineering department staffed by former Emerson employees.
Bedaux (1886-1944) was a French immigrant who was a clerk at a St. Louis chemical company. In 1910 when an expert arrived to conduct time studies, Bedaux quickly grasped the essentials of time study and replaced the outsider. Then he found other clients. The turning point in his career came in 1912, when he accompanied several Emerson engineers to France as an interpreter. In Paris he struck out on his own, reorganized several factories, and studied the writings of Taylor and Emerson. Returning to the United States during World War I, he launched the Bedaux Company and began to cultivate clients. He relied on a simple, compelling promise: he would save more money than he charged. Although Bedaux employed able engineers and usually made some effort to reorganize the plant, his specialty was the incentive wage. His men worked quickly, used time studies to identify bottlenecks and set production standards, installed a wage system similar to Emerson’s. Bedaux’s clients included General Electric, B. F. Goodrich, Standard Oil of New Jersey, Dow Chemical, Eastman Kodak, and more than two hundred other American firms by the mid-1930s. His European offices were even more successful.
Whereas Taylor and his followers opposed wage cutting and “speed-up” efforts, Emerson was more flexible, and Bedaux made a career of forcing workers to do more for less. One notable result was a resurgence of strikes and union protests. By the 1930s, Bedaux had become infamous on both sides of the Atlantic. In response to his notoriety, he revised his incentive plan to increase the worker’s share and dropped much of his colorful terminology, including the famous B unit. Bedaux’s business survived, though neither he nor his firm regained the position they had enjoyed in the late 1920s and early 1930s.
Bedaux’s legacy was a substantial burden for other industrial engineers. The growth of labor unrest in the 1930s and the frequent appearance of the “Be-do” plan on grievance lists revived the association of industrial engineering with labor turmoil. Regardless of their association with Bedaux and his tactics, industrial engineers became the targets of union leaders and their allies. In industries such as autos and tires, worker protests paralyzed the operations of industrial engineering departments and led to the curtailment or abandonment of many activities.
Diffusion of Industrial Engineering
There are at least three partial measures of the diffusion of industrial engineering. First, the many references to cost accounting, centralized production planning and scheduling, systematic maintenance procedures, time study, and employment management in the trade press and in the records of industrial corporations indicate that these activities were no longer novel or unfamiliar to executives. The promotional work of the consultants, the “efficiency craze,” and the growth of management education in universities had made the rudiments of industrial engineering widely available; only the oldest or most isolated executives were unaware of them. The critical issue was no longer the desirability of the new management; it was the particular combination of techniques suitable for a given firm or plant, the role of the outside consultant, if any, and the authority of the staff experts.
Second, the information on industrial wage systems that the National Industrial Conference Board assiduously collected in the 1920s and 1930s documents widespread acceptance of incentive wage plans, particularly among large corporations. In 1928, for example, 6 percent of the smallest companies (1-50 employees) had incentive wage plans, while 56 percent of the largest firms (more than 3,500 employees) had such plans. In earlier years, small firms devoted to industrial reform had been among the most vigorous proponents of industrial engineering. But their ranks did not grow, and they were soon overshadowed by large corporations, which found in industrial engineering an effective answer to the problems that often prevented large, expensive factories from achieving their potential. Incentive wage plans were an indicator of this trend. Feiss, Dennison, and others hoped to transform the character of industrial work through the use of incentives and personnel programs; judging from the information that survives, big business managers had more modest goals. Their principal objective was to make the best use of existing technology and organization by enlisting the workers’ interest in a higher wage. In the early 1930s, many managers were attracted to the “work simplification” movement that grew out of the Gilbreths’ activities, but the effects were apparently negligible, at least until the World War II mobilization effort. To most manufacturers, industrial engineering provided useful answers to a range of shop-floor problems; it was a valuable resource but neither a stimulus to radical change nor a step toward a larger goal.
A third source, contemporary surveys of the industrial engineering work of large corporations, provides additional support for this conclusion. A 1928 survey by the Special Conference Committee, an elite group of large industrial firms, emphasized related problem. It reported wide differences in the practice of time study, in the duties of time-study technicians, and in the degree of commitment to time study as an instrument for refining and improving the worker’s activities. At Western Electric, which had one of the largest industrial engineering staffs, a manufacturing planning department was responsible for machinery and methods; the time-study expert was simply a rate setter. At Westinghouse, which also had a large industrial engineering department, time-study technicians were responsible for methods and rates. However, a report from the company’s Mansfield, Ohio, plant indicated that the time-study engineer could propose changes in manufacturing methods “in cooperation with the foremen.” Most companies had similar policies. The time-study expert was expected to suggest beneficial changes to his superiors, often after consulting the foreman, but had no independent authority to introduce them. Essentially, the “expert” was a rate setter. In most plants, industrial engineering focused on detail, seldom threatened the supervisors or workers, and even more rarely produced radical changes in methods.
Experience at Du Pont
A recent, detailed examination of industrial engineering at E. I. Du Pont de Nemours & Company, a Special Conference Committee member, suggests the range of possibilities that could exist in a single firm (Rumm 1992, 175-204). Du Pont executives created an Efficiency Division in 1911 after the company’s general manager read The Principles. Rather than employ an outside consultant, they appointed two veteran managers to run the division. These men conducted time and motion studies, “determined standard times and methods for tasks, set standard speeds for machinery, and made suggestions for rearranging the flow of work, improving tools, and installing labor-saving equipment.” Yet they encountered a variety of difficulties; their proposals were only advisory, they clashed with the new employment department when they proposed to study fatigue and the matching of workers and jobs, and they found that many executives were indifferent to their work. Worst of all, they could not show that their activities led to large savings. In 1914, after the introduction of functional supervision in the dynamite-mixing department apparently caused several serious accidents, the company disbanded the Efficiency Division.
Although some Du Pont plants introduced time-study departments in the following years, the company did nothing until 1928, when it created a small Industrial Engineering Division within the larger Engineering Department. The IED was to undertake a “continuous struggle to reduce operating costs.” That battle was comparatively unimportant until the Depression underlined the importance of cost savings. In the 1930s, the IED grew rapidly, from twenty eight engineers in 1930 to over two hundred in 1940. It examined “every aspect of production,” conducted job analyses, and introduced incentive wage plans. IED engineers began with surveys of existing operations. They then “consolidated processes, rearranged the layout of work areas, installed materials-handling equipment, and trimmed work crews.” To create “standard times” for particular jobs, they used conventional stopwatch time study as well as the elaborate photographic techniques the Gilbreths had developed. By 1938, they had introduced incentive wage plans in thirty plants; one-quarter of all Du Pont employees were affected.
Du Pont introduced a variety of incentive plans. Three plants employed the Bedaux Company to install its incentive system. Other managers turned to less expensive consultants, and others, the majority, developed their own “in-house” versions of these plans. Some executives, and workers, became enthusiastic supporters of incentive wages; others were more critical. Despite the work of the aggressive and ever-expanding IED, many workers found ways to take advantage of the incentive plans to increase their wages beyond the anticipated ranges. Wage inflation ultimately led the company to curtail the incentive plans. Time and motion study, however, remained hallmarks of Du Pont industrial engineering.
During the depression of the 1930s, when they developed a new sensitivity to the value of industrial engineering, they defined it as a way to cut factory costs. One reason for this perspective was bureaucratic: Du Pont had developed an extensive personnel operation in the 1910s and 1920s, which had authority over employee training, welfare programs, and labor negotiations. Equally important was the apparent assumption that industrial engineering only pertained to the details of manufacturing activities, especially the work of machine operators. Despite mounting pressures to reduce costs, the company’s offices, laboratories, and large white-collar labor force remained off-limits to the IED. Despite these handicaps, the IED had a significant impact because rapid technological change in the industry created numerous opportunities for organizational change and Du Pont avoided relations with powerful unions.
Du Pont executives were receptive to the “principles” of industrial engineering but focused on the particulars, which they assessed in terms of their potential for improving short-term economic performance. As a result there was little consistency in their activities until the 1940s; even then, industrial engineering was restricted to the company’s manufacturing operations. This approach, fragmentary and idiosyncratic by the standards of Taylor or Dennison, was logical and appropriate to executives whose primary objective was to fine-tune a largely successful organization.
During the first third of the twentieth century, industrial engineers successfully argued that internal management was as important to the health of the enterprise as technology, marketing, and other traditional concerns. Their message had its greatest impact in the 1910s and 1920s, when their “principles” won wide acceptance and time study and other techniques became common-place. Managers whose operations depended on carefully planned and coordinated activities and reformers attracted to the prospect of social harmony were particularly receptive. By the 1930s, the engineers’ central premise, that internal coordination required self-conscious effort and formal managerial systems, had become the acknowledged basis of industrial management.
Allan Mogensen's Common Sense Applied to Motion and Time Study (1932)
Ralph Barnes's Industrial Engineering and Management: Problems and Policies (1931).
Steward M. Lowry, Harold B. Maynard, and G. J. Stegmerten's widely used Time and Motion Study and Formulas for Wage Incentives. - The 1927 edition treated motion study only briefly and insubstantially, while devoting many chapters to stopwatch methods and rate setting formulas. In 1932, the authors approached Lillian Gilbreth and her research group for more detailed information on their methods. By 1940 Lowry, Maynard, and Stegmerten had reduced their treatment of wage incentive formulas from nine chapters to three, and increased the number of chapters devoted to motion study to seven.
Policy Decisions by Top Management: Starting and Expanding IE Department, Approval of Productivity Improvement Project Portfolio as part of Capital Budgeting of the Company, Approving Productivity Policy, Setting Productivity and Cost Reduction Goals. Setting Employee related comfort, health and safety goals. Incentive income policy making.
Facilities are used by processes. Facilities are common to processes. Taylor clearly mentioned in his "Piece Rates - Elementary Rate Fixing System" paper that he has to make modifications to all machines to increase productivity of his machine shop. Toyota even today carries out gradual improvements to the machines in the direction of autonomation. Machines are continuously improved. Period layout studies and readjustments are another example of facilities industrial engineering. 5S that demands upkeep of facilities is another example of facilities IE when it is implemented for the first time and proposed and initiated by the IE department. Thereafter it becomes the activity of operations management.
Process Industrial Engineering - Process Machine Effort Industrial Engineering - Process Human Effort Industrial Engineering.
Process industrial engineering is the popular method of industrial engineering. But, the process chart method was promoted by Motion Study books. The machine effort industrial engineering, that is improvement of machine effort, that was done by Taylor primarily to increase productivity got neglected in the evolution of industrial engineering. It is a weakness to be corrected to make IE a strong discipline.
Process chart is a condensed version that show the entire process of producing a full product and the production of each part. The process chart is composed by symbols representing 5 operations. Operation - Inspection - Transport - Temporary Delay (WIP) - Permanent Storage (controlled store). Using process chart, the sequence of operations can be investigated and changed for more benefit. But each operation needs to be improved. It is termed simplification in process chart analysis. To do simplification information on each operation has to be collected in operation information sheets and they have to be analyzed in operation analysis sheets (Stegemerten and Maynard)
Elements are in Operations - We can understand the term "element" from the subject "Design of Machine Elements". Each engineering product has elements. Similarly each operation, that is part of a process has elements. Some are related to machines and tools used in the process. Some are related to human operators. Some are related to working conditions. Some are related to the work being done. Taylor first named the productivity department as "Elementary Rate Fixing Department." It has to improve each and every element in task and determine the output possible for unit time in the work element. The time allowed for that element for a piece or batch is determined through these elementary standard times or allowed times.
2005
Georgia Tech Fall 2005 Engineering Enterprise Issue has an article on History of IE at Georgia
#IISE75 (1948 - 2023) - 75 Productive Years of IISE (Institute of Industrial and Systems Engineers)
Wyllys Stanton. Inside his Columbus, Ohio home on Jan. 12, 1948 (75 years ago), he and a dozen others met to discuss “the problems, methods and potentialities of a new organization specializing in the problems and interests of industrial engineers.”
That’s a direct quote from a blurb Stanton himself penned. It’s included in “Origins of Industrial Engineering: The Early Years of a Profession,” by Howard P. Emerson and Douglas C.E. Naehring.
The fateful discussion inside Stanton’s home included talks on prospective membership requirements, ways such an organization could be useful, scopes of activities and plans for the path ahead.
“There seemed to be no question in the founders' minds of the desirability of such an organization,” Stanton wrote. “They believed that industrial engineering was an important branch of engineering and just as much in need of an organization devoted to its exclusive representation as civil, mechanical, or electrical engineers.”
Invites were sent out to all known industrial engineers in the Columbus area to attend the American Institute of Industrial Engineers’ first-ever meeting. The name would later change multiple times to reflect the organization’s international presence as well as the scope of professions included in what is now the Institute of Industrial and Systems Engineers. For more: iise.org/75
Prof. Diemer started the first two year specialization and the first four-year course in industrial engineering in the Pennsylvania State College. Now it is Penn State University.
Histories of Industrial Engineering Departments and Institutes - USA
Updated on 1.6.2024, 23.9.2023, 18.1.2023, 1 June 2022, 2 January 2022, 8.11.2021, 1 June 2021, 1 April 2021, 19 May 2020, 9 April 2020, 10 November 2019, 22 December 2014
The updates to this post are examples of industrial engineering - continuous improvement based on periodic reviews as well as when a relevant information becomes available or an idea comes to mind.
The first creation of the post is the example of basic engineering - product design as well as process design. The updates made show that there will be opportunities for improvement. Similarly in engineering systems, there is opportunity for industrial engineering, periodic and continuous improvement.
Thanks For Sharing. Especia Associates is one of the leading Financial Advisors & Consultants company In India. We provide CA Services, CFO Services, Company Secretary Services, ESOP Services, etc. An ESOP works for Employees as it is typically established to aid strategic planning in a privately held business by letting employees purchase shares of the stock. Companies of diverse sizes, including several large multinational enterprises, use ESOPs. ESOP works for employees as they can amass a rising number of shares, which can increase over time based on the length of their job. if you need ESOP Services call 9310165114 or visit us How ESOP works for Employees
This is informative article that I found. Your post is really good to read for me. If you are looking for the Best College for Btech in Delhi , Then contact us, We are TIIPS and we provide the various course like BBA, BCA, BJMC, BTech and BA LLB.
Thanks for such a great article here. I was searching for something like this for quite a long time and at last I’ve found it on your blog. It was definitely interesting for me to read about their market situation nowadays. Well written article Thank You for Sharing with Us CCTV Repairing Course CCTV Repairing Institute In Delhi
This post has been really helpful in understanding the different types of electrical systems and how they work. It's fascinating to learn about the intricacies of electricity!
nice Information HisabKitab is a leading bookkeeping service provider in Surat, offering top-notch accounting and bookkeeping solutions to businesses of all sizes. With a team of experienced accountants and advanced technology, HisabKitab ensures accurate financial records, timely reporting, and compliance with all relevant laws and regulations. Their services include bookkeeping, tax planning and preparation, payroll management, and more, all tailored to meet the specific needs of their clients. With affordable pricing and personalized service, HisabKitab is the go-to choice for businesses looking to streamline their financial operations and achieve their goals.
Thanks For Sharing. Hisabkitab provides professional bookkeeping services in Surat for businesses of all sizes. Their team of experts ensures accurate financial record-keeping, timely reporting, and compliance with regulatory requirements. Their services help businesses streamline their accounting processes and make informed financial decisions.
Its a very nice description on the history and evolution of Industrial Engineering. Thanks.
ReplyDeletegreat!
ReplyDeleteIndustrial Engineering FREE ONLINE Course.
ReplyDeleteDaily lesson sharing starts today.
https://nraoiekc.blogspot.com/2013/10/industrial-engineering-history.html
Thanks For Sharing. Especia Associates is one of the leading Financial Advisors & Consultants company In India. We provide CA Services, CFO Services, Company Secretary Services, ESOP Services, etc. An ESOP works for Employees as it is typically established to aid strategic planning in a privately held business by letting employees purchase shares of the stock. Companies of diverse sizes, including several large multinational enterprises, use ESOPs. ESOP works for employees as they can amass a rising number of shares, which can increase over time based on the length of their job. if you need ESOP Services call 9310165114 or visit us How ESOP works for Employees
ReplyDeleteThis is informative article that I found. Your post is really good to read for me. If you are looking for the Best College for Btech in Delhi
ReplyDelete, Then contact us, We are TIIPS and we provide the various course like BBA, BCA, BJMC, BTech and BA LLB.
Thanks for such a great article here. I was searching for something like this for quite a long time and at last I’ve found it on your blog. It was definitely interesting for me to read about their market situation nowadays. Well written article Thank You for Sharing with Us
ReplyDeleteCCTV Repairing Course
CCTV Repairing Institute In Delhi
This is very impressive blog..thanks for sharing..
ReplyDeletesubjects in bba marketing
This post has been really helpful in understanding the different types of electrical systems and how they work. It's fascinating to learn about the intricacies of electricity!
ReplyDeleteAmazing! Thank you for providing this informative blog. Software Companies Chennai
ReplyDeletefind truck services near you Breakdown Inc find repair shops near you.
ReplyDeletenice Information
ReplyDeleteHisabKitab is a leading bookkeeping service provider in Surat, offering top-notch accounting and bookkeeping solutions to businesses of all sizes. With a team of experienced accountants and advanced technology, HisabKitab ensures accurate financial records, timely reporting, and compliance with all relevant laws and regulations. Their services include bookkeeping, tax planning and preparation, payroll management, and more, all tailored to meet the specific needs of their clients. With affordable pricing and personalized service, HisabKitab is the go-to choice for businesses looking to streamline their financial operations and achieve their goals.
Thanks For Sharing.
ReplyDeleteHisabkitab provides professional bookkeeping services in Surat for businesses of all sizes. Their team of experts ensures accurate financial record-keeping, timely reporting, and compliance with regulatory requirements. Their services help businesses streamline their accounting processes and make informed financial decisions.
2023-2024.
ReplyDeleteCirculation Starting Today. Industrial Engineering FREE ONLINE Course - Daily lesson sharing starts today (1st June).
Lesson 1. Industrial Engineering - History
#IndustrialEngineering #Productivity #CostReduction
https://nraoiekc.blogspot.com/2013/10/industrial-engineering-history.html
Students who are pursuing BA from various universities can check their ba 2nd year time table online and prepare for their exams accordingly.
ReplyDeletehi
ReplyDelete