Monday, July 31, 2017

August - Industrial Engineering Knowledge Revision Plan with Links

Revision of Process Industrial Engineering - Methods, Techniques and Tools

In this month's revision plan the focus is on production process improvement which also includes many engineering processes related to production and maintenance of engineering goods and services.

Management of processes are also analyzed and redesigned by industrial engineers. If management processes, activities and policies are responsible for poor productivity, industrial engineers have to propose changes in management methods, practices and tools to improve productivity. This aspect of industrial engineering is discussed under the area - productivity management.

Process Industrial Engineering - Process Efficiency/Productivity Improvement - Process Cost Reduction

First Week

Process Industrial Engineering

Machine Tool Improvement and Cutting Time Reduction

Operation Analysis - Methods Efficiency Engineering

Operation Analysis Sheet

    Using the Operation Analysis Sheet
    Analysis of Purpose of Operation

    Analysis of All Operations of a Process as a Step of Each Operation Analysis
    Analysis of Tolerances and Inspection Standards

    Analysis of Material in Operation Analysis
    Tool Related Operation Analysis

Second Week

    Material Handling Analysis in Operations
    Operation Analysis of Setups

    Operation Analysis - Man and Machine Activity Charts
    Operation Analysis - Plant Layout Analysis

    Operation Analysis - Analysis of Working Conditions and Method
    Operation Analysis - Common Possibilities for Operation Improvement

    Operation Analysis - Check List
    Method Study

   Principles of Methods Efficiency Engineering
   Method Study - Information Collection and Recording - Chapter Contents

Third Week

Process Analysis - Questions/Check List

Installing Proposed Methods

Eliminate, Combine, Rearrange, Simplify - ECRS Method - Barnes
Inspection Methods Efficiency Engineering

Systems Installation - Installing Proposed Methods
Plant Layout Analysis

Flow Process Charts - Reinterpretation of Its Purpose and Utility
Industrial Engineering of Flow Production Lines - Thought Before Taiichi Ohno and Shigeo Shingo


Fourth Week

Industrial Engineering - Foundation of Toyota Production System

Toyota Production System Industrial Engineering - Shigeo Shingo

Introducing and Implementing the Toyota Production System - Shiego Shingo
Seven Waste Model and Its Extensions

Industrial Engineering of Maintenance Processes
Manufacturing System Losses Idenfied in TPM Literature

Industrial Engineering of Inspection Processes
Industrial Engineering of Material Handling Processes

Zero Defect Movement and Six Sigma Method
Process Cost Analysis - Cost Center Statement Analysis

One Year Industrial Engineering Knowledge Revision Plan

January - February - March - April - May - June

July - August - September - October - November - December

Updated  30 July 2017,  28 July 2016, 19 April 2015, 17 July 2014


This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this
resource exists. People may post this content online or redistribute in any way for non-commercial

Read more about Early Journal Content at
journal-content .




Modified Excerpts from the paper

Little by little, as the engineering student goes forward in education and practice,  he begins to see that the possession of certain powers enables him to conquer hesitant men and recalcitrant machines,
and also problems which involve both men and machines simultaneously. And the powers which enable him to do these things are science and engineering (convertising science into useful devices and processes). His thinking helps him in this.

I assume that no course in the industrial engineering steam would be begun before the end of the Sophomore year in college. The man who reaches the Junior year of college or technical school
must have had some training in science and mathematics or he would not be eligible to enter the industrial engineering course. He must have acquired some common-sense and scientific attitude
on his way, and the knowledge of science and common-sense so gained should be sufficient to enable him to recognize that in electing scientific management he is deliberately electing to follow a long and arduous road. The problem before us, then, when we discuss the work of men electing industrial engineering courses, is taking men with some common-sense and some knowledge of science and raising what they have to the highest possible power.

How, then, can the industrial engineer become a scientist, attain the scientific attitude of mind ?

By welding the scientific work of the classroom with the shop-work of the factory; by making the laboratory hours, hours that are spent with wage-earners striving for their daily wage. Laboratory and classroom hours alike must be filled with reality rather than with pure theory or with theory quite unrelated to the practical world.

The student must first of all, get in touch with the shop. And I insist that he can do that nowhere save in actual operating shops among men who are working for their daily wage. No shop practice in the school will produce a like result. Shop-sense is one of the most valuable possessions of the industrial
engineer. That sense comes only through actual shop practice. Once possessed it means that the man has thereafter the freedom of the shop.

To attain the desirable ends of knowledge of science and posses-sion of common-sense I propose that any course in the science of management shall consist of classroom work as outlined below and
of laboratory work carried on in actual operating shops. That means that manufacturers who are broad-minded enough to be willing to assist the college, and instructors broad-minded enough
to recognize the limitations of industry must co-operate in giving the laboratory instruction in shop practice to the students. I believe both groups of men exist and I feel that through their combined efforts the student should have an opportunity to spend the summers of his Sophomore and Junior years in actual shop practice, while three afternoons a week during the scholastic year should see him working in the shop.

What underlying thought must be before the men who make the courses ?

The industrial engineer is dealing in all cases with both men and machines. He must study "man" in his relation to his industrial environ-ment — not any single class of men, but all the men engaged in
industry. He must study "machines," not alone in their relation to their product, but also in relation to the human beings who operate them. It is his task to bring the best that modern science has to the aid and well-being of man.

It is in the development of his pupil's studies of men that the wise teacher of scientific management will work most steadfastly in correlating the allied courses, mentioned later, in psychology
and physiology, in economics and sociology, with the courses in the science of management, and with the work of living men and whir-ring machines.

The industrial engineer must recognize the presence of many factors in a problem. He must solve equations of not only two unknown quantities, but of a dozen unknown quantities, so to speak. And
the correlation of his courses in class with each other and with life will do much in the way of enabling him to do so.

When should the work begin, and how much of the student's time should it occupy ?

Direct work in industrial engineering and scientific management should begin either at the
end of two years or of four years in college. The direct and allied special classroom courses should occupy one full year of collegiate training, divided between two years' work, making a half-year's
work in scientific management during both the Junior and Senior years. The shopwork should occupy two summer vacations and three afternoons a week during each of the two years.

What courses should be offered ?

A dominant course in the science of management running through two years, allied with courses in economics, sociology, psychology, physiology, hygiene and sanitation, theory and practice
of accounting. All these should be in addition to the student's more direct work in science, mathematics, engineering, English, and foreign languages, which occupy the time of three out of the four collegiate years — if the courses are made undergraduate ones.

What should be the content of the scientific management courses given during the four half-years that comprise the Junior and Senior years of most colleges and technical schools ?

The first half-year should be devoted to a general view of four picked industries — in order that the student may see industry more or less as a whole — and to the study of the principles of
scientific management. The laboratory work for this course should consist of the broad outlined study of four plants from the time of the receipt of the first inquiry from the prospective customer to the final entry of the payment for the bill and the calculation of the cost. The classroom work for this course should be devoted to a thorough grounding in the basic principles of organization,
and to study of the principles of scientific management.

It is most essential that the student should obtain at the very start a clear realization of the difference between system and science. It is most essential also that he should come to understand that,
while certain problems solved for one industry may be solved for all industry, such general solutions cannot be presumed upon. He should know that every new business will contain new problems,
which must be solved by the use of all the knowledge of the past plus all the imaginative genius he can hope to possess. That is to say, the student must learn that a mechanism used successfully
in one place cannot be bodily transported to another with hope of instant success. By the end of the first half-year each individual taking the course should have come to realize that he is studying
the principles of a science which are applicable to every case, not memorizing a set of rules or inheriting a stock of recipes. The study of four actual operating plants will aid him greatly in this

The second half-year should be devoted in the classroom to a detailed study of the planning-room and the processes involved in getting work into the shop, of stores, routing, specifications, etc. —
planning in general, in a word. The laboratory work should consist of actual planning-room experience in the shop.

It is entirely true that there is a question as to whether planning-room experience should follow or precede shop training. It may, therefore, be a question whether planning should be put in this
course. It is my own belief that the student will master his shop theory better the third half-year from the fact that he has discovered the basic reasons of the work in the planning-room. It should be
noted, moreover, in this connection that I have assumed that the student has had a summer's experience in actual shop practice as a prerequisite of the course, and that he has had a half year of
general preliminary study.

The third half-year should be devoted to a detailed study of work in the shop (especially of the teaching work of the functional foreman), of inspection, and of task work. All of this except the
study of task work should be done in actual plants. The task work should be done on fellow-students in the shops of the school. No untrained man should ever be put on actual task-setting.

The third half-year offers a great opportunity to impress upon the student the importance of the teaching function of his work. The whole theory of functional foremanship is a theory of educa-
tion and a great part of the time of an industrial engineer must be spent in teaching the men with whom he is working. Adequate powers of expression are by no means common among our recent
graduates. The teacher of scientific management can never forget that the work of his pupils must show in the life-work of the men with whom they are dealing. The bridge-builder leaves a physical
monument largely untouched by the later thought of men. The industrial builder must educate in such a way that his work will go progressively forward in the minds of men. That is true education,
and education is true only when it obtains adequate expression.

The fourth half-year should be devoted to studies in bringing all the best that science offers to the aid of industry — to work in costs, to work in the determining of policies by studies of sales,
purchasing, and the like, and to the co-ordination of the work of the three half-years already outlined.

The course of the fourth half-year should be broad enough to give the student some concept that great movements of trade exist and that they are factors which he must meet and use. The world
is fairly well provided with men who can look after a few details.

It is very poorly provided with men who can care for great constructive work. One of the greatest industrial leaders of our time said to me the other day: "The greater the affairs of a corporation, the
smaller the number of men who can deal with them. It seems to be a true inverse proportion. There are ten men who can think in a hundred thousand dollars, to one who can think in a million,
and ten who can think in a million to one who can think in ten millions."

I should hardly expect any course to give an undergraduate a great grasp of comprehensive plans. There is, however, no reason why we should hitch our wagon to the lowest of the stars when we
can find higher ones within our reach.

In the foregoing resume of a course in the science of management I have made no reference to many subjects I should have been glad to consider, to reports and theses, to methods and policies. Considerations of brevity forbade. I must turn again to my catechism and end with three brief questions and three brief answers.

What should the allied courses teach ?

The relation of man to industry and to his general environment.

What should the college courses in English teach ?

The power of expression.

What should the work in scientific management teach ?

That scientific management is a change of mental attitude (mental attitude, now, as always, the most powerful force among men) which makes employer and employee pull together instead of apart, which brings all that is best in science to the aid of every man in industry, and which, by its substitution of exact knowledge for the chaos of guess work and ignorance, makes progressively for
justice and for the coming of the "new industrial day."

Hollis Godfrey

West Medford, Mass.

I am happy I covered some these issues in my principles of industrial engineering.
Principles of Industrial Engineering

Video Presentation









JUNE 26-29, 1912



INTRODUCTION. " Frank. B. Gilbreth



32 32 37









Walter Rautenstrauch


H. F. J. Porter 94


L. J. Johnson 108

F. P.McKibben

112 118



129 133 139 145





161 182



OF COLLEGES. " S. E. Whitaker

205 217


updated  18 June 2017, 15 August 2015

Sunday, July 30, 2017

Machine Tool Improvement and Cutting Time Reduction

Machine Effort Industrial Engineering

Determination of optimum cutting parameters - Speed, Feed and Depth of Cut - Development of scientific machine work

Taylor described his project of improving a machine shop productivity and below is the work he had done on machines first.

By means of four quite elaborate slide-rules, which have been especially made for the purpose of determining the all-round capacity of metal-cutting machines, a careful analysis was made of every element of this machine in its relation to the work in hand. Its Pulling power at its various speeds, its feeding capacity, and its proper speeds were determined by means of the slide-rules, and changes were then made in the countershaft and driving pulleys so as to run it at its proper speed. Tools, made of high-speed steel, and of the proper shapes, were properly dressed, treated, and ground. (It should be understood, however, that in this case the high-speed steel which had heretofore been in general use in the shop was also used in our demonstration.) 

A large special slide-rule was then made, by means of which the exact speeds and feeds were indicated at which each kind of work could be done in the shortest possible time in this particular lathe. After preparing in this way so that the workman should work according to the new method, one after another, pieces of work were finished in the lathe, corresponding to the work which had been done in our preliminary trials, and the gain in time made through running the machine according to scientific principles ranged from two and one-half times the speed in the slowest instance to nine times the speed in the highest.

The change from rule-of-thumb management to scientific management involves, however, not only a study of what is the proper speed for doing the work and a remodeling of the tools and the implements in the shop (machine effort industrial engineering), but also a complete change in the movements made by operators to operate the machine.  The physical improvements in the machines are necessary to insure large gains. They are followed by improvement in the activities performed by people in combination with machines. 

It seems important to fully explain the reason why, with the aid of a slide-rule, and after having studied the art of cutting metals, it was possible for the scientifically equipped man, who had never before seen these particular jobs, and who had never worked on this machine, to do work from two and one-half to nine times as fast as it had been done before by a good mechanic who had spent his whole time for some ten to twelve years in doing this very work upon this particular machine. 

In a word, this was possible because the art of cutting metals involves a true science of no small magnitude, a science, in fact, so intricate that it is impossible for any machinist who is suited to running a lathe year in and year out either to understand it or to work according to its laws without the help of men who have made this their specialty. Men who are unfamiliar with machine-shop work are prone to look upon the manufacture of each piece as a special problem, independent of any other kind of machine-work. They are apt to think, for instance, that the problems connected with making the parts of an engine require the especial study, one may say almost the life study, of a set of engine-making mechanics, and that these problems are entirely different from those which would be met with in machining lathe or planer parts. In fact, however, a study of those elements which are peculiar either to engine parts or to lathe parts is trifling, compared with the great study of the art, or science, of cutting metals, upon a knowledge of which rests the ability to do really fast machine-work of all kinds.

The real problem is how to remove chips fast from a casting or a forging, and how to make the piece smooth and true in the shortest time, and it matters but little whether the piece being worked upon is part, say, of a marine engine, a printing-press, or an automobile. For this reason, the man with the slide rule, familiar with the science of cutting metals, who had never before seen this particular work, was able completely to distance the skilled mechanic who had made the parts of this machine his specialty for years.

It is true that whenever intelligent and educated men find that the responsibility for making progress in any of the mechanic arts rests with them, instead of upon the workmen who are actually laboring at the trade, that they almost invariably start on the road which leads to the development of a science where, in the past, has existed mere traditional or rule-of-thumb knowledge.

When men, whose education has given them the habit of generalizing and everywhere looking for laws, find themselves confronted with a multitude of problems, such as exist in every trade and which have a general similarity one to another, it is inevitable that they should try to gather these problems into certain logical groups, and then search for some general laws or rules to guide them in their solution.

Development of Science for Machine Elements

Two Important Questions regarding Machine Tools to be Answered through Scientific Research

All of these experiments were made to enable us to answer correctly the two questions which face every machinist each time that he does a piece of work in a metal-cutting machine, such as a lathe, planer, drill press, or milling machine. These two questions are:

In order to do the work in the quickest time,

1. At what cutting speed shall I run my machine? and

2. What feed shall I use?

They sound so simple that they would appear to call for merely the trained judgment of any good mechanic. In fact, however, after working 26 years, it has been found that the answer in every case involves the solution of an intricate mathematical problem, in which the effect of twelve independent variables must be determined.

Each of the twelve following variables has an important effect upon the answer. The figures which are given with each of the variables represent the effect of this element upon the cutting speed.

For example, after the first variable (A) we quote,

"The proportion is as I in the case of semi-hardened steel or chilled iron to 100 in the case of a very soft, low-carbon steel." The meaning of this quotation is that soft steel can be cut 100 times as fast as the hard steel or chilled iron. The ratios which are given, then, after each of these elements, indicate the wide range of judgment which practically every machinist has been called upon to exercise in the past in determining the best speed at which to run the machine and the best feed to use.

(A) The quality of the metal which is to be cut; i.e., its hardness or other qualities which affect the cutting speed. The proportion is as 1 in the case of semi-hardened steel or chilled iron to 100 in the case of very soft, low-carbon steel.

(B) The chemical composition of the steel from which the tool is made, and the heat treatment of the tool. The proportion is as 1 in tools made from tempered carbon steel to 7 in the best high-speed tools.

(C) The thickness of the shaving, or, the thickness of the spiral strip or band of metal which is to be removed by the tool. The proportion is as 1 with thickness of shaving 3/16 of an inch to 3 1/2 with thickness of shaving 1/64 of an inch.

(D) The shape or contour of the cutting edge of the tool. The proportion is as 1 in a thread tool to 6 in a broad-nosed cutting tool.

(E) Whether a copious stream of water or other cooling medium is used on the tool. The proportion is as 1 for tool running dry to 1.41 for tool cooled by a copious stream of water.

(F) The depth of the cut. The proportion is as 1 with 1/2 inch depth of cut to 1.36 with 1/8 inch depth of cut.

(G) The duration of the cut, i.e., the time which a tool must last under pressure of the shaving without being reground. The proportion is as 1 when tool is to be ground every 1 1/2 hours to 1.20 when tool is to be
ground every 20 minutes.

(H) The lip and clearance angles of the tool. The proportion is as 1 with lip angle of 68 degrees to 1.023 with lip angle of 61 degrees.

(J) The elasticity of the work and of the tool on account of producing chatter. The proportion is as 1 with tool chattering to 1.15 with tool running smoothly.

(K) The diameter of the casting or forging which is being cut.

(L) The pressure of the chip or shaving upon the cutting surface of the

(M) The pulling power and the speed and feed changes of the machine.

It may seem preposterous to many people that it should have required a period of 26 years to investigate the effect of these twelve variables upon the cutting speed of metals. To those, however, who have had personal experience as experimenters, it will be appreciated that the great difficulty of the problem lies in the fact that it contains so many variable elements. 

And in fact the great length of time consumed in making each single experiment was caused by the difficulty of holding eleven variables constant and uniform throughout the experiment, while the effect of the twelfth variable was being investigated. Holding the eleven variables constant was far more difficult than the investigation of the twelfth element.

As, one after another, the effect upon the cutting speed of each of these variables was investigated, in order that practical use could be made of this knowledge, it was necessary to find a mathematical formula which expressed in concise form the laws which had been obtained. As examples of the twelve formulae which were developed, the three following are given:

        P = 45,000  D 14/15 F 3/4

        V = 90/T 1/8

        V = 11.9/ (F 0.665(48/3 D) 0.2373 + (2.4 / (18 + 24D))

After these laws had been investigated and the various formulae which mathematically expressed them had been determined, there still remained the difficult task of how to solve one of these complicated mathematical problems quickly enough to make this knowledge available for every-day use. If a good mathematician who had these formula before him were to attempt to get the proper answer (i.e., to get the correct cutting speed and feed by working in the ordinary way) it would take him from two to six hours, say, to solve a single problem; far longer to solve the mathematical problem than would be taken in most cases by the workmen in doing the whole job in his machine. Thus a task of considerable magnitude which faced us was that of finding a quick solution of this problem, and as we made progress in its solution, the whole problem was from time to time presented by the writer to one after another of the noted mathematicians in this country. They were offered any reasonable fee for a rapid, practical method to be used in its solution. Some of these men merely glanced at it; others, for the sake of being courteous, kept it before them for some two or three weeks. They all gave us practically the same answer: that in many cases it was possible to, solve mathematical problems which contained four variables, and in some cases problems with five or six variables, but that it was manifestly impossible to solve a problem containing twelve variables in any other way than by the slow process of "trial and error."

A quick solution was, however, so much of a necessity in our every-day work of running machine-shops, that in spite of the small encouragement  received from the mathematicians, we continued at irregular periods, through a term of fifteen years, to give a large amount of time searching for a simple solution. Four or five men at various periods gave practically their whole time to this work, and finally, while we were at the Bethlehem Steel Company, the slide-rule was developed which is illustrated on Folder No. 11 of the paper "On the Art of Cutting Metals," and is described in detail in the paper presented by Mr. Carl G. Barth to the American Society of Mechanical Engineers, entitled "Slide-rules for the Machine-shop, as a part of the Taylor System of Management" (Vol. XXV of The Transactions of the American Society of Mechanical Engineers). By means of this slide-rule, one of these intricate problems can be solved in less than a half minute by any good mechanics whether he understands anything about mathematics or not, thus making available for every-day, practical use the years of experimenting on the art of cutting metals. This is a good illustration of the fact that some way can always be found of making practical, everyday use of complicated scientific data, which appears to be beyond the experience and the range of the technical training of ordinary practical men. These slide-rules have been for years in constant daily use by machinists having no knowledge of mathematics.

A glance at the intricate mathematical formula which represent the laws of cutting metals should clearly show the reason why it is impossible for any machinist, without the aid of these laws, and who depends upon his personal experience, correctly to guess at the answer to the two questions,

    What speed shall I use?

    What feed shall I use?

even though he may repeat the same piece of work many times.

To return to the case of the machinist who had been working for ten to twelve years in machining the same pieces over and over again, there was but a remote chance in any of the various kinds of work which this man did that he should hit upon the one best method of doing each piece of work out of the hundreds of possible methods which lay before him. In considering this typical case, it must also be remembered that the metal-cutting machines throughout our machine-shops have practically all been speeded by their makers by guesswork, and without the knowledge obtained through a study of the art of cutting metals. In the machine-shops systematized by us we have found that there is not one machine in a hundred which is speeded by its makers at anywhere near the correct cutting speed. So that, in order to compete with the science of cutting metals, the machinist, before he could use proper speeds, would first have to put new pulleys on the countershaft of his machine, and also make in most cases changes in the shapes and treatment of his tools, etc. Many of these changes are matters entirely beyond his control, even if he knows what ought to be done.

If the reason is clear to the reader why the rule-of-thumb knowledge obtained by the machinist who is engaged on repeat work cannot possibly compete with the true science of cutting metals, it should be even more apparent why the high-class mechanic, who is called upon to do a great variety of work from day to day, is even less able to compete with this science. The high-class mechanic who does a different kind of work each day, in order to do each job in the quickest time, would need, in addition to a thorough knowledge of the art of cutting metals, a vast knowledge and experience in the quickest way of doing each kind of hand workAnd the reader, by calling to mind the gain which was made by Mr. Gilbreth through his motion and time study in laying bricks, will appreciate the great possibilities for quicker methods of doing all kinds of hand work which lie before every tradesman after he has the help which comes from a scientific motion and time study of his work.

For nearly thirty years past, time-study men connected with the management of machine-shops have been devoting their whole time to a scientific motion study, followed by accurate time study, with a stop-watch, of all of the elements connected with the machinist's work. When, therefore, the teachers, who form one section of the management, and who are cooperating with the working men, are in possession both of the science of cutting metals and of the equally elaborate motion-study and time-study science connected with this work, it is not difficult to appreciate why even the highest class mechanic is unable to do his best work without constant daily assistance from his teachers. And if this fact has been made clear to the reader, one of the important objects in writing this paper will have been realized.

It is hoped that the illustrations which have been given make it apparent why scientific management must inevitably in all cases produce overwhelmingly greater results, both for the company and its employees, than can be obtained with the management of "initiative and incentive." And it should also be clear that these results have been attained, not through a marked superiority in the mechanism of one type of management over the mechanism of another, but rather through the substitution of one set of underlying principles for a totally different set of principles, by the substitution of one philosophy for another philosophy in industrial management.

Many researchers follow the path initiated by Taylor to develop cutting speed optimization and cutting time reduction to develop better methods for various machine tools. Industrial engineers have to go through those papers and use proper cutting parameters and reduce the cutting time. Similar work needs to be carried on various other machine so that that work time is reduced to produce unit output, thereby increasing the productivity of machines.

Saturday, July 29, 2017

The present state of the art of industrial management - 1912 - Report Information

The 99 page report is available with Stevens S.C. Williams Library for online download. It is available as jpg page pictures


Productivity Science - Principle of Industrial Engineering


Develop a science for each element of a man - machine system's work related to efficiency and productivity.

The productivity science developed is the foundation for industrial engineering in productivity engineering and productivity management phases.

1-Productivity Science


Principles of Industrial Engineering - Narayana Rao - Presentation at 2017 IISE Annual Conference - Pittsburgh, USA

23 May 2017



Principles of Industrial Engineering - Narayana Rao - Detailed List

Clicking on the link will take you to more detailed content on the principle

The full paper on the principles by Prof. K.V.S.S. Narayana Rao is now available for downloading from IISE 2017 Annual Conference site in prepublished format.

Readings on the topic of Productivity Science

From Taylor's First Paper Publication to 1950

Development of Science for Working of Machines

Scientific Management in Machine Shop

Development of Science for Working of Man - Motions

Development of Science in Mechanic Arts

H.M. Wilcox
The definition of the word science is knowledge duly arranged and systematized.
The present state of the art of industrial management : majority and minority report of sub-committee on administration ; including discussion (page 1164)
Author American Society of Mechanical Engineers. Subcommittee on Administration.

Oxford Dictionary - Organized body of knowledge that has been accumulated on a subject

Modern Period - 1951 onwards

Journal International Journal of General Systems
Volume 5, 1979 - Issue 1

Productivity in the Services Sector
Barry P. Bosworth and Jack E. Triplett, January 1, 2000

Productivity in Public and Nonprofit Organizations
Margo Berman
Routledge, 18-Dec-2014 - First published 2006, Business & Economics - 240 pages

‘Smarter, Faster, Better’: The New Science of Productivity
2 June 2016

The Science of Economic Development and Growth: The Theory of Factor Proportions: The Theory of Factor Proportions
C.C. Onyemelukwe
Routledge, 08-Jul-2016 - Business & Economics - 384 pages

The New Science of Sales Force Productivity
Dianne Ledingham, Mark Kovac, Heidi Locke Simon
Harvard Business Review, THE SEPTEMBER 2006 ISSUE

The International Journal of Productivity and Performance Management aims to address new developments in productivity science, performance measurement and management and to improve individual, group and organizational performance.
IJPPM is the official journal of the World Confederation of Productivity Science

Updated  30 July 2017,  10 July 2017,  9 July 2017, 29 June 2017

Friday, July 28, 2017

Process Industrial Engineering

Process Improvement - Gilbreths' View

Frank Gilbreth developed process analysis and improvement also along with motion study. In 1921, he presented a paper in ASME, on process charts. Lilian Gilbreth was a coauthor of this paper.

At the end of the paper, the conclusion made is as follows:

The procedure for making, examining and improving a process is, therefore, preferably as follows:

a.  Examine process and record with rough notes and stereoscopic diapositives the existing process in detail.

b. Have draftsman copy rough notes in form for blueprinting, photographic projection and exhibition to executives and others.

c. Show the diapositives with stereoscope and lantern slides of process charts in executives' theater to executives and workers.

d. Improve present methods by the use of —
1 Suggestion system
2 Written description of new methods or 'write-ups," "manuals," ''codes," ''written systems," as they are variously called
3 Standards
4 Standing orders
5 Motion study
6 Micromotion studies and chronocyclegraphs for obtaining and recording the One Best Way to do Work.

e. Make process chart of the process as finally adopted as a base for still further and cumulative improvement.

We see in the method described above the method study steps of record, and examine. The practice of involving the workers in analyzing the process chart which was later popularized by Alan Mogensen is also present in the method suggested by Gilbreth to improve a process.  Motion study as a later step in the process analysis method, which was emphasized by H.B. Maynard as part of the operation analysis proposed by him is also visible in the procedure described by Gilbreths.

H.B. Maynard proposed "Operation Analysis" for process improvement.

So, we can see the methods engineering and methods study which became popular subsequently were futher development of Gilbreth's process improvement procedure only.

Process Engineering

Process engineering focuses on the design, operation, control, optimization and Intensification of chemical, physical, and biological processes. Process engineering encompasses a vast range of industries, such as chemical, petrochemical, agriculture, mineral processing, advanced material, food, pharmaceutical, software development and biotechnological industries.

Process Industrial Engineering

Process engineering is an established term in engineering. Hence process industrial engineering, which represents the redesign of processes by industrial engineers to improve productivity is an appropriate term.

Methods Engineering, Operations Analysis, Method Study and Motion Study are various methods or procedures of process industrial engineering.

The process industrial engineering has to develop analysis and improvement of technical elements of a process in more detail to make industrial engineering an engineering based activity to increase productivity in engineering organizations, departments and activities.

Process industrial engineering also includes improvement of related management activities. F.W. Taylor was a pioneer in introducing many changes in management practices to improve productivity. Industrial engineering adopted the same objective. So within process industrial subject area comes the function of management process industrial engineering.

Methods efficiency engineering is the earlier proposed name. Now it is rechristened as Process Industrial Engineering. Product Industrial Engineering and Process Industrial Engineering are the two main components of productivity engineering which is totally dependent on the engineering knowledge of the industrial engineer.

The Function of Methods Efficiency Engineering

Methods efficiency engineering was the activity performed by F.W. Taylor and explained first in his paper "A Piece Rate System." As it evolved over the years, it became a  a logical and systematic procedure for reducing costs, increasing production without an impairment to quality.  Methods efficiency engineering may be applied with equal success to repetitive work or to jobbing work, to simple, easily understood operations or to complex, specialized jobs. It is applicable to all man machine systems, manual work or automated work.

Definition of Methods efficiency engineering.  Briefly it may be said that Methods efficiency engineering is the industrial engineering component  which is chiefly concerned with increasing the efficiency of resources used in a method.

Methods efficiency engineering is the technique that subjects each operation of a given piece of work to close analysis in order to eliminate every unnecessary operation and in order to approach the quickest and best method of performing each necessary operation; it includes the standardization of equipment, methods, and working conditions ; it trains the operator to follow the standard method; when all this has been done,  it determines by accurate measurement the number of standard hours in which an operator working with standard performance can do the job.

A methods efficiency study always begins with a careful primary analysis of existing conditions. The reason is that the existing system is taken as an effective system that is producing the required output at quality acceptable to the customers. The first factors that are considered are the number of pieces made or the yearly activity, the length of the operation, and the hourly rate of the operator or operators doing the job. This information permits the computation of the yearly cost of the job. An estimate is next made of the probable improvement that methods study can make. This in turn determines the kind and amount of methods-engineering work that can profitably be undertaken.

The method or process is recorded for the purpose of presenting the study problem clearly. Then complete information is compiled for each operation concerning such points as the purpose of the operation,tolerance requirements, material and material handling, and tools and equipment used.

As a part of methods efficiency engineering, motion study, that is study of motions of the operator is made. In motion study, each individual motion used in doing the work is considered in detail to try to shorten the motion or to eliminate it altogether.

After the new method has been devised, information and records describing the redesigned procedure must be carefully made and communicate.  If the method is available in a written form, frequent audits can be done to make sure it is being followed.

The operator or operators must next be taught to follow the new method. This may be done by verbal instructions, demonstrations at or away from the workplace, instruction sheets or operator process charts ; or by the highly successful procedure that employs motion pictures.

Explanation of the Term "Methods efficiency engineering." 

The term " Methods efficiency engineering" is of comparatively recent origin.

When trained methods efficiency engineer brings to his job an extensive knowledge of fundamental waste-eliminating practices, every body will recognize its utility in the organization.

Development of Methods efficiency engineering - History

Rate Setting History

Probably the oldest wage-payment plan to be used by man was not day work, as might be supposed, but piecework. Day work probably came into being only when one "man desired to pay another man to work for him at a variety of tasks or to retain his general services to use or not at his discretion. Servants, for example, were paid on this basis. As industry began to grow, day work was used more and more, probably because this was the easiest method of payment where a variety of work was handled. Supervision was direct in most cases, labor was plentiful, and fear of dismissal furnished the incentive to produce.

At the same time, piecework payment was used in a number of instances. The weaver who worked a loom in his own home was paid for what he produced and not for the number of hours he spent at work. In the case of piecework, some plan that encouraged a definite output by the workers was felt necessary.  Incentive plans came into existence.  He was using records of past performance and his own judgment of what a man could accomplish if he worked with an honest effort to fix piece rates.

These two factors proved to be utterly unreliable. Records of past performance told only how much was produced and gave no indication of the conditions under which the work was done or of the method used by the operator. Under the stimulus of an incentive, the operator could almost always devise a better method and, by working steadily with a good effort, could make earnings that often exceeded those of the foreman. The various problems associate with these incentive plans,  defeated the purpose of incentives which was to stimulate production.

All this time, competition was becoming increasingly keen. The need for incentives was felt most strongly, and the importance of proper rate setting caused a search for a better way of handling the matter. Thus the position of rate setter was established. The new setup gave somewhat better results, but conditions were far from satisfactory. Toward the end of the nineteenth century, therefore, the more progressive plants began to feel the need for a better, fairer, and more accurate method of handling the rate question. The problem was attacked independently in a number of plants in USA and abroad, and various solutions were offered which have contributed to a greater or lesser extent to methods-engineering practices. One attack, for example, was to attempt to equalize the inconsistencies of poor rate setting by the wage-payment plan; and this led to the development of such well-known plans as the Halsey premium plan and, later, the Rowan plan.

Taylor's Pioneering Efforts in Methods Improvement

Taylor used stop watch time study of understand the best practices of doing work at elemental level. Through the study of work and output using time study, Taylor found that some were following improper methods, many did not take full advantage of their tools and equipment, and all were subject to many interruptions. Hence, Taylor often found that a man could do two or three times as much as he had previously done in a day. Taylor carefully selected individual workman, guided, trained and made them produce the expected output under the guidance of  management or supervision specialists. As one person produced according to the expected output, he trained one more man. In this manner gradually more and more operators were trained to produce the increased output. Since those days, time study has increased the productivity of industry manyfold. It has resulted in improved conditions, standardization, reduced costs, better production control, and better satisfied labor wherever it has been properly applied, and it has been applied to nearly every class of work.

Taylor' s system was to give the workman a definite task to be accomplished in a definite time in a definite manner. The workman was told in detail how to do the job. The method was established by careful study.

Taylor's original procedure forms the basis of methods engineering. It has been improved upon by those who came after him, as is the case when any new science is developed.
Taylor stressed the importance of improving method of doing the job and he used stop watch time study for that purpose. Frank B. Gilbreth  stressed the importance of the detailed study of methods and thereby made a distinct contribution to methods efficiency engineering . As an apprentice bricklayer, he became impressed with the fact that most brick- layers had their own way of doing a job. Being very observant, he noticed further that each worker had three ways of doing the same job: one that he taught to other inexperienced workers, one that he used when working slowly, and one that he used when working at his normal speed. Gilbreth became interested in the reasons underlying this, analyzed the work of number operators and developed the technique of motion study. The Gilbreths established a laboratory and studied motions by laboratory methods. As a result, they made a number of fundamental discoveries and originated the concept of therbligs, or basic divisions of accomplishment. They were the first to recognize that there are certain definite principles which govern efficient working practices, and they developed several techniques for studying the motions used in performing operations. Of these, the motion study made with the aid of motion pictures, often called the "micromotion technique' is the best known and most used. Of the originality, soundness, and value of their contribution to methods engineering, there can be no question.

As has been pointed out, Taylor's original work forms the basis of modern Methods efficiency engineering. Paralally, the developments made by the Gilbreths were  incorporated.

Motion study was improved further.  Better designs of industrial motion-picture equipment permit the wider use of the motion picture at a greatly reduced cost. The element of time has been tied in with the concept of therbligs, or basic divisions of accomplishment, thus offering a new and valuable approach to methods study. The leveling principle permits adjusting the time data obtained from a study taken on any kind of performance over a wide range to a standard level with a high degree of accuracy, thus permitting the setting of accurate and consistent rates. Finally, time-formula derivation has been developed to a point that makes possible the quick and accurate setting of a large number of rates or time allowances with a minimum of engineering effort. This later became pre-determined motion system. MTM and MOSt are widely used predetermined motion time systems.

Methods Efficiency Engineering Procedure

Methods efficiency engineering is now  a carefully planned, systematic procedure. Standard process charts have been developed to a state of greater flexibility and have become more useful for analysis purposes.

Economic Function of Methods efficiency engineering

Under modern business conditions, one of the major problems which faces the managers of industry is that of constantly reducing costs. Markets are restricted for any product  because many individuals are economically unable to purchase the product at the current market price. Even in periods of prosperity, millions of people are able to supply themselves with only the barest necessities of life because of high prices of many items.

In any country, there are the fewest individuals in the highest group of income  and the greatest number of people are in the lowest group with some groups of people at intermediate income levels. At each level, there is a group with a certain purchasing power.

The consumers at any economic levels but the highest few have only a limited amount to spend. All kinds of products are offered to them in various enticing ways. Competition as a result is keen and ruthless. The only way an industrial unit an hope to survive under these conditions is constantly to seek to keep production costs as low as possible.

Taylor's "Shop Management" paper described methods that gave lower production cost and higher income to operators. Cost reduction methods aim at waste elimination in machine work and man work so that greater production is secured with less effort.

Methods efficiency engineering is primarily concerned with devising methods that increase production and reduce costs. Hence, it plays an important role in determining the competitive position of a plant. As competition appears to be become keener,  Methods efficiency engineering becomes increasingly important.

Methods efficiency engineering in an industrial unit can never be considered as completed. Costs that are satisfactory and competitive today become excessive in a comparatively short time because of the improved developments of other units of the industry. If the producer who is in a good competitive position today decides that his costs have reached rock bottom and that no further attempt to improve them is necessary, within a short while he is likely to find himself facing loss of his commercial standing as owner of an efficiently managed plant. Only by constantly seeking to improve can any unit safeguard its competitive position. Conditions in industry are never static, and steady progress is the only sure way to success.

Cost-reduction work is important as a factor for survival, but it  also expands the industry and the firm. There are  various economic strata of society. Assume that a certain company is manufacturing a product that, although universally desirable, is priced so high that only those individuals in group C or higher can purchase it. The market for the product is thus rather limited. If, however, properly conducted cost-reduction work permits the lowering of the selling price so that the individuals in group D can purchase the product, the market is at once greatly expanded, perhaps doubled or even tripled. Henry Ford was among the first to combine recognition of this principle with the courage to act upon it.

In actual practice, society is not divided into definite groups, but incomes range, in small steps, from next to nothing to the highest. Hence, each time the selling price of a product is reduced, even though it is as little as 1 per cent, the product is brought within the reach of more people. Therefore, it may be seen that cost reduction as a means of increasing the distribution of the product is at all times important.

Methods efficiency engineering and Shop Supervisors

The methods efficiency man is by no means the only one who takes an interest in establishing economic costs and improving methods. The foremen, the tool designers, and the other shop supervisors all realize the importance of keeping costs upon a competitive level. Very often they make worth-while improvements in manufacturing methods. The differences between the methods efficiency man and the other shop supervisors are two. In the first place, the methods man devotes all his time to methods work, whereas the other supervisors have numerous duties, which force them to consider methods work as incidental to their major activities. In the second place, the methods, man conducts his methods studies systematically and makes improvements as the result of applying a carefully developed technique. This technique is based upon a large amount of specialized knowledge which can be acquired only by special study and training. Therefore, unless a course in Methods efficiency engineering has been given to the other shop supervisors, their improvements are less certain and are due more to inspiration than to deliberate intent.

For these reasons, the major part of methods improvement is usually made by methods engineers. This is not a necessary condition, however; for the principles that they use can be learned by the other supervisors and can be applied, in part at least, during the course of their other work. Certain progressive organizations have realized this and have given methodsengineering training in more or less detail to their various key supervisors. The results, as may be expected, have been gratifying, and methods-improvement work has received a marked impetus (Maynard 1938).

It is hoped that this technique will be used by shop supervisors such as foremen, tool designers, and so on, as well as by methods engineers; for if the principles of methods efficiency work are understood throughout an organization, that organization will be in a good position to meet competition, depressions, or any other economic disturbances which may come its way.

Alan Mogensen advocated work simplification methodology. In this method, he used to conduct methods work shops based on process chart to supervisors and operators and used to improve processes with the involvement of the trainees. He was very successful in this endeavor for three decades and his method was adopted by Training Within Industry (TWI) program and then from them by Toyota Motors. Now, industrial engineering is being taught in undergraduate engineering programs to make all engineers practice industrial engineering and also to train their supervisors and operators. But in undergraduate programs, only mechanical branch and other branches are not teaching. It is important that it is taught in all engineering branches.

Adopted based on the first chapter of Maynard's Operation Analysis

Full Knol Book - Method Study: Methods Efficiency Engineering - Knol Book
Next Article - Process Analysis and Operation Analysis - Methods Efficiency Engineering

August month Industrial Engineering Knowledge Revision Plan is completely focused on Process Industrial Engineering

Process Industrial Engineering - Article Index  - Presently it contains the copy of August revision plan. More articles are to be added to this index.

Updated 30 July 2017,   19 July 2017,  26 March 2017, 7 February 2017
Revision made on 23 Nov 2013
Revision made on 16 Feb 2014, 11 April 2015

Thursday, July 27, 2017

Prohibition Policy in Bihar

There is an editorial in today's Economic Times (27 July 2017)

Editorial in 27 July 2017 TheEconomic Times

BJP the gainer, as Nitish Kumar recalibrates
July 26, 2017, 11:42 PM IST ET Edit in ET Editorials | India, politics | ET

The last sentence

In all this, Kumar has demonstrated that he is one of India’s most ruthless — and flexible — politicians. We would urge Kumar to show similar flexibility and scrap, or at the very least partially reverse, his prohibition policy, which can only be enforced by using the coercive power of the state and a concomitant violation of civil liberties.

Should Nitish Kumar scrap prohibition policy as suggested by the Editor of Economic Times?

After prohibition, Bihar aims for dowry-free villages

Political analysts believe that after successfully imposing prohibition on liquor in Bihar, chief minister Nitish Kumar is now raising the bar in an attempt to emerge as a social reformer.
Updated: Jul 16, 2017
Reena Sopam, Hindustan Times, Patna

Prohibition in Bihar: Supreme Court extends deadline for liquor disposal till 31 July
29 May

Why prohibition has worked in Bihar?

D. N. Sahaya | New Delhi
April 28, 2017
The writer is ex-Governor, Chattisgarh and Tripura and former chairman, A. N. Sinha Institute of Social Studies, Patna.

Tough Implementation of Prohibition in Bihar

The Bihar model of prohibition seems to have taken off with a bang, with around 44,000 people put behind bars and over 10 lakh litres of liquor seized, during its one-year of enforcement since April 1, 2016.
1 April 2017

Somebody is unhappy that media is not writing against prohibition and its strict implementation.
Bihar’s liquor war: Prisoners of prohibition and the conspiracy of silence
By opinionbihar March 9, 2017

PM asks people of Bihar to support the prohibition policy


PM Modi praises Nitish Kumar for ‘remarkable ability’ over prohibition policy in Bihar
Prime Minister Narendra Modi on Thursday praised Bihar chief minister Nitish Kumar over his controversial move to ban liquor in the state despite objections from all quarters, calling it a “courageous step”.
Jan 05, 2017
HT Correspondent
Hindustan Times, Patna

PM urged to put ban on sale of alcohol across the country.

Bihar CM, while addressing his recent anti-liquor campaigns in different states especially Uttar Pradesh and Jharkhand, urged the PM to put ban on sale of alcohol across the country.
A former governor of Assam and Tamil Nadu, Bhishma Narain Singh, who hails from BJP-ruled Jharkhand, supported Nitish Kumar and requested the Prime Minister Narendra Modi to announce complete ban on alcohol and tobacco across the country on the occasion of International Yoga Day on June 21.
Jun 20, 2016

The Bihar Prohibition And Excise Act, 2016

National consensus on prohibition sought
Dec 25, 2001
Chennai: Ambedkar People's Movement (APM) president and former Chennai mayor Vai Balasundaram on tuesday appealed to the centre and state governments to evolve a national consensus on implementation of prohibition in the country.

Tuesday, July 25, 2017

Functions of Industrial Engineering



The functions of management are currently given as Planning, Organizing, Resourcing, Executing and Control.

What are functions of Industrial Engineering (IE)?

Industrial engineering has the following functions:

Research in Industrial Engineering
Productivity Science
Productivity Engineering
Productivity Management
Communication, Training and Implementation
Productivity Measurement

Research in Industrial Engineering

Industrial engineering has emerged out of shop management and scientific management developed and promoted by F.W. Taylor. Development of science related to production systems or work systems consisting of machines and men is the foundation for this subject. Hence research is an important function of industrial engineering. Industrial engineers are to be taught scientific research method and process so that they can understand the research papers published by IE researchers and also undertake research related to local applications.

Productivity Science

Research propositions and the tests of research propositions are to be consolidated into scientific theories related to various issues of interest in the field of industrial engineering.

Productivity Engineering

Redesign of engineering processes to make them more productive is productivity engineering. The two important outputs of engineering processes are products or services and processes to produce those goods and services. Redesign of human actions also is part of productivity engineering. Productivity engineering is driven forward by productivity science. Improvement iterations take place within productivity engineering itself due to inventions taking place.

Productivity Management

Productivity management consists of activities of industrial engineers in the field of management. These activities have two objectives. One objective is to assess various management policies, programs and processes for the impact on productivity of engineering processes. Where they do not have desirable effects, industrial engineers have to propose redesign of them.

The second objective is the management of productivity in organizations. Industrial engineers are responsibility for managing the productivity. They have to plan for productivity improvement, organize for it, acquire resources for it, executive productivity improvement projects and activities and control them to achieve the planned goals.

Productivity science gives impetus for developing management methods that increase productivity. Thus productivity science is an input to productivity engineering and productivity management.

Communication, Training and Implementation

Industrial engineering is carried out as staff activity. The redesigns of the IE projects are to be communicated to various persons in the organization to establish its feasibility and also get them approved by competent authorities for funding. Then, industrial engineers have to train various persons in the new methods. Even though, they are a staff function, they have to be part of implementation teams and their work is not over till implementation is done.

Productivity Measurement

Measurement of productivity is an important function. After productivity improvement projects are implemented, measurements have to validate the improvement. Also past measurements or new measurements become the basis for planning productivity improvement programs.


Based on the productivity measurements, a review of situation is to be made to take decisions regarding future efforts in the area of productivity. The results of review become the sources for further research, productivity engineering and productivity management activities.

The principles of industrial engineering proposed by Dr. K.V.S.S. Narayana Rao - Presented at the 2017 Annual Conference of Institute of Industrial and Systems Engineers (IISE) - at Pittsburgh, USA are the basis for deriving the functions of industrial engineering

Principles of Industrial Engineering - Taylor - Narayana Rao 



Compare and find the agreement of many scholars, departments of industrial engineering with the above explanation

University of Pretoria

Monday, July 24, 2017

The Complete Business Process Handbook - Book Information

The Complete Business Process Handbook: Body of Knowledge from Process Modeling to BPM, Volume 1

Mark von Rosing, Henrik von Scheel, August-Wilhelm Scheer
Morgan Kaufmann, 06-Dec-2014 - Business & Economics - 776 pages

The Complete Business Process Handbook is the most comprehensive body of knowledge on business processes with revealing new research. Written as a practical guide for Executives, Practitioners, Managers and Students by the authorities that have shaped the way we think and work with process today. It stands out as a masterpiece, being part of the BPM bachelor and master degree curriculum at universities around the world, with revealing academic research and insight from the leaders in the market.

This book provides everything you need to know about the processes and frameworks, methods, and approaches to implement BPM. Through real-world examples, best practices, LEADing practices and advice from experts, readers will understand how BPM works and how to best use it to their advantage. Cases from industry leaders and innovators show how early adopters of LEADing Practices improved their businesses by using BPM technology and methodology. As the first of three volumes, this book represents the most comprehensive body of knowledge published on business process. Following closely behind, the second volume uniquely bridges theory with how BPM is applied today with the most extensive information on extended BPM. The third volume will explore award winning real-life examples of leading business process practices and how it can be replaced to your advantage.

Learn what Business Process is and how to get started
Comprehensive historical process evolution
In-depth look at the Process Anatomy, Semantics and Ontology
Find out how to link Strategy to Operation with value driven BPM
Uncover how to establish a way of Thinking, Working, Modelling and Implementation
Explore comprehensive Frameworks, Methods and Approaches
How to build BPM competencies and establish a Center of Excellence
Discover how to apply Social BPM, Sustainable and Evidence based BPM
Learn how Value & Performance Measurement and Management
Learn how to roll-out and deploy process
Explore how to enable Process Owners, Roles and Knowledge Workers
Discover how to Process and Application Modelling
Uncover Process Lifecycle, Maturity, Alignment and Continuous Improvement
Practical continuous improvement with the way of Governance
Future BPM trends that will affect business
Explore the BPM Body of Knowledge