Tuesday, September 30, 2014

September - Industrial Engineering Knowledge Revision Plan

Motion-Economy Device Design - Important Devices
Combination Tools

Summary - Principles of Jig and Fixture Design
Jig and Fixture Design - Detailed Treatment

Introduction to Engineering Economics
Time Value of Money Calculations

Cash Flow Estimation for Expenditure Proposals
Required Rate of Return - Cost of Capital

Depreciation and Other Related Issues
NPV - IRR and Other Summary Project Assessment Measures


Income Expansion Projects
Cost Reduction Projects

Replacement Decisons
Expected Values and Risk of Project Revenues and Costs

Engineering Economy or Engineering Economics: Economic Decision Making by Engineers
Introduction to Engineering Economics

Time Value of Money
Present-Worth Comparisons

Required Rate of Return for Investment or Expenditure Proposal..
Rate-of-Return Calculations


Equivalent Annual-Worth Comparisons
Replacement Analysis

Replacement Problem - Engineering Economy Analysis
Machine Selection Problem for an Engineer - Engineering Economic Analysis

Depreciation and Income Tax Considerations
Sensitivity Analysis

Structural Analysis of Alternatives

1. The Function of Methods Efficiency Engineering
2. Approach to Operation Analysis as a Step in Methods Efficiency Engineering

3. Scope and Limitations of Methods Efficiency Engineering
    Operation Analysis Sheet


    Using the Operation Analysis Sheet
    Analysis of Purpose of Operation

    Analysis of All Operations of a Process as a Step of Each Operation Analysis
    Analysis of Tolerances and Inspection Standards

    Analysis of Material in Operation Analysis
    Tool Related Operation Analysis

    Material Handling Analysis in Operations
    Operation Analysis of Setups

    Operation Analysis - Man and Machine Activity Charts
    Operation Analysis - Plant Layout Analysis

    Operation Analysis - Analysis of Working Conditions and Method
    Operation Analysis - Common Possibilities for Operation Improvement

    Operation Analysis - Check List
Industrial Engineering - Foundation of Toyota Production System

Toyota Production System Industrial Engineering - Shigeo Shingo
Introducing and Implementing the Toyota Production System - Shiego Shingo


Principles of Motion Economy
Principles of Motion Economy - More Details - R.M. Barnes

Motion Study - Human Effort Engineering
Variables of Motion Related to the Operator - Description by Frank Gilbreth

Motion Study - Operation Analysis - Questions


Tuesday, September 16, 2014

Frederick Winslow Taylor - A Pioneer Industrial Engineer


Important Events in Life

Date of Birth: 20th March, 1856
Mr. Taylor was born at Germantown, Philadelphia, on March 20, 1856

Taylor took a home study course to get his college degree in mechanical engineering in 1883 from Stevens Institute of Technology at Hoboken, New Jersey

1905 and 1906
President of ASME
Taylor was President of the American Society of Mechanical Engineers in 1905 and 1906.

1911 -  Tuck School hosted a major conference that helped launch the scientific management movement started by Frederick Winslow Taylor.

Taylor was awarded the honorary degree of Doctor of Science by the University of Pennsylvania. Taylor was made a Professor by the Tuck School of Business at Dartmouth College. He spent some time in teaching and research at this business school.

21st March 1915: F. W. Taylor, Expert in Efficiency, Dies
PHILADELPHIA, March 21--Frederick Winslow Taylor, originator of the modern scientific management movement, died here today from pneumonia. He was 59 years old, and was a former President of the American Society of Mechanical Engineers.

Frederick Taylor University (FTU) established in 1994, is named after the “Father of Scientific Management” Frederick Winslow Taylor (March 20, 1856 – March 21, 1915), who obtained his degree from Stevens Institute of Technology via distance education (correspondence) in 1883.
Bibliography on F.W. Taylor
Taylor's Biography  and His Methods and Contribution to Industrial Engineering and Management Thought
The Story Schmidt (An excerpt from Scientific Management)

Taylor's Shovel

Science for Coal Shoveling

In this article a point is made on using body weight instead of muscle and thus reducing effort of the worker.

A recent paper by Frievalds on shoveling



Original knol - http://knol.google.com/k/narayana-rao/frederick-winslow-taylor-a-pioneer/2utb2lsm2k7a/ 2314

MS in IE& OR in USA - Likely Cost

Georgia Institute of Technology (Ranked as Number one by US News)
(http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools/top-engineering-schools/industrial-engineering-rankings  )
In the above linked the tuition fee was given as  was given as $27,130 per year.
But http://www.bursar.gatech.edu/student/tuition/Spring_2015/Spring15-all_fees.pdf  gives tuition fee information on semester basis.

University of Michigan Ann Arbor
The Masters degree requires 30 credit hours and is intended for the student with a technical undergraduate degree.
US News says tution fee is $41,998 per year.
The university website says $21,868 per term 9+ credits or $2,752 for first hour and 2,390 per additional hours. At this rate  30 credit hours come to appx $75,000.

Direct application to Phd is possible for undergraduates.

Columbia University


MS in IE OR  $80,727

MS in FE $102,435


Employee Involvement in Industrial Engineering Projects Advocated by Taylor

I presented this paper in the conference organized by European Association of Management in Switzerland. My presentation in the conference is in this video



16 September 2014

My subsequent study of the IE books brought out the fact that Ralph Barnes indicated that industrial engineering discipline or function can be implemented in an organization in three patterns. Pattern A is IE is practised by expert industrial engineering staff. In Pattern B, managers and supervisors also participate in the IE activities. In Pattern C, operators also participate in IE activities.

Allan Mogensen is an industrial engineer who advocated work simplication. Simplication is a step in ECRS (Eliminate, Combine, Rearrange, and Simplify) framework described in method studies. Epecially each process has to be subjected to ECRS analysis. Mogensen found that operation simplification is one step in which each operator can participate effectively. It is imperative for the organization to implement a system to encourage operators to participate in the operation simplication or work simplifications. Organizations not doing it are wasting an opportunity to improve efficiency and profit.

Master in Sustainable Industrial Engineering - Grenoble Institute of Technology - France

 Industrial engineering is the branch of engineering that is concerned with the efficient production of industrial goods as affected by elements such as plant and procedural design, the management of materials and energy, and the integration of workers within the overall system.

Sustainable Industrial Engineering addresses the issue of sustainability of industry in three ways: from an environmental point of view, from a social and societal point of view, from an economical point of view.

Sustainable industrial engineering has myriads of application fields since it encompasses the whole value chain and lifecycle of products: from the development of new and innovative machines, products-services to the market and recyclability.


A Study of the Toyota Production System from an Industrial Engineering Viewpoint - Shigeo Shingo - Google Book


The first and only book in English on JIT, written from the industrial engineer's viewpoint. When Omark Industries bought 500 copies and studied it companywide, Omark became the American pioneer in JIT.

Here is Dr. Shingo's classic industrial engineering rationale for the priority of process-based over operational improvements in manufacturing. He explains the basic mechanisms of the Toyota production system, examines production as a functional network of processes and operations, and then discusses the mechanism necessary to make JIT possible in any manufacturing plant.

#Provides original source material on Just-in-Time
#Demonstrates new ways to think about profit, inventory, waste, and productivity
#Explains the principles of leveling, standard work procedures, multi-machine handling, supplier relations, and much more
#If you are a serious student of industrial engineering, you will benefit greatly from reading this primary resource on the powerful fundamentals of JIT.

Table of Contents

Mechanism of the production function
Improvement of process
Improvement of operation
Development of non-stock production
Interpretation of the Toyota Production System
Mechanism of TPS
Development of a "kanban" system
Regarding TPS
Course of TPS
Introduction and development of TPS

My Summary of the book
Industrial Engineering in Toyota Production System - Lean Production

One more  summary

Implementation of Industrial Engineering in Toyota Motors

Toyota motors made reducing cost and eliminating waste a strategic focus area from the moment, Japan was defeated in the second world war and American occupation of Japan was announced.

On August 15, 1945 Kiichiro Toyoda, then president of Toyota Motor Company, said: “Catch up with America in three years. Otherwise, the automobile industry of Japan will not survive” (Ohno, 1988).  This statement of Kiichiro Toyoda is with respect cost of producing an individual car in Japan. He wanted Japanese car to cost less than American car and then only Japanese people will buy Toyota cars. The immediate problem for Toyota is not quality of the car, which Kiichiro Toyoda believed was of acceptable quality but its cost which is high compared to American cars.  In Ohno's book Taiichi went on to say: “To accomplish this mission, we had to know America and learn American ways” (Ohno, 1988).

Ohno believed that the quickest way to catch up with America was to import American production management techniques and business management practices. Toyota studied industrial engineering (IE)  as according to  Ohno it is profit making engineering. Based on his understanding of industrial engineering, Ohno implemented first in his department and then across the company,  a company-wide system tied directly to management to systematically lower cost and raise productivity. (Ohno, 1988).

According to Shigeo Shingo, management should possess a set of fundamentals closely related to industrial engineering.  If management cannot understand how to attack the rationalization of the current system, through scientific study, then it cannot be expected to improve or change. (Shingo, 2005).

The focus of industrial engineering is cost reduction through engineering and management  practices changes. If industrial engineers had to focus on one aspect of their field it would be productivity or productivity improvement. That is, the total elimination of waste by increasing efficiency through cost reduction (Going, 1911).

Shingo is well versed in the writings of Gilbreth and Taylor. He is a strong believer in the utility of process and operation analysis. Shingo is also an expert engineer. Therefore he could develop Single Minute of Exchanging Dies (SMED) and Foolproofing or Mistakeproofing (Pokayoke) in many engineering activities and generalize them into important methods. But Japanese Management Assocation followed Allan Mogensen's idea of involving front line employees in industrial engineering projects through work simplification projects or activity. Shingo was conducting training programs to educate engineers and supervisors in process improvement. In that capacity he conducted more 85 training programs in Toyota Motors. But, Shingo was himself doing many improvement projects and developing theory, principles and methods. He wrote number of books also.

Industrial engineering in Toyota Motors became more popular as kaizen. Actually, it was an American initiative that made the work Kaizen popular in Japan in the context of promoting industrial way of improving production processes. Thus the kaizen specialist appeared in Japana. Bicheno suggests that a kaizen specialist should be capable of performing value engineering in product design and development (Bicheno, 2000). Gradually, the demand on the kaizen specialist to acquire more skills was made and he was asked to become capable of performing environmental scanning using complex such as the x-matrix, Porter's matrix and other sophisticated diagnostic tools to do benchmarking and maintain competitive advantage in the area of efficiency of the organization (Jackson, 2006). That pursuit resulted in his advocating and implementing cellular manufacturing, production flow analysis and supply chain infrastructure design (Askin & Goldberg, 2002; Srinivasan, 2004). In these contexts, the kaizen specialist is illustrated as person that exists within an organization to advance efficiency concepts in highly specialized areas.  The kaizen specialist is expected to work with employees utilizing team-based worker participation activities often referred to as kaizen events.  They must have the ability to lead groups. Martin and Osterling state that these specialists should be armed with PowerPoint kick-off material, masking tape, whiteboards, post-it notes and kaizen team t-shirts etc. to form the group and get it going in the right direction with enthusiasm (Martin & Osterling, 2007). A successful kaizen event is one where the specialist can get employees to get involved and feel they have ownership (Tapping, 2007). While workers are more involved, the kaizen specialist is still responsible for the results and outcome. Kaizen events are popular because they have been used to accelerate productivity improvements in a short amount of time (Mika, 2006).

Eiji Toyoda, former chairman, once said “At Toyota, Kaizen is in the air.” He meant that you will breathe kaizen in Toyota’s plants, because you can see everybody is working to improve. Toyota’s DNA is Kaizen. Kaizen is a Japanese word which means continual improvement. But at Toyota, Kaizen means everyday improvement in ‘gemba’ or the shop floor (Masaki Imai).

Askin, R., & Goldberg, J. (2002). Design and analysis of lean production systems. New York: John Wiley and Sons, Inc.

Bicheno, J. (2000). The Lean Toolbox. Buckingham, England: PICSIE Books.

Going, C. (1911). Principles of industrial engineering. London: Hill Publishing Co., Ltd, McGraw-Hill Book Company, Inc.

Imai, Masaki, http://www.autofocusasia.com/management/kaizen_toyota_success.htm

Jackson, T. (2006). Hoshin Kanri for the lean enterprise. New York: Productivity Press.

Martin, K., & Osterling, M. (2007). The kaizen event planner: Achieving rapid improvement in office, service and technical environments. New York: Productivity Press.

Mika, G. (2006). Kaizen: Event implementation manual (5th Ed.). Dearborn, MI: Society of Manufacturing Engineers.

Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production. New York: Productivity Press.

Shingo, S. (2005). A study of the Toyota Production System: From an Industrial Engineering Viewpoint. New York: CRC Press, Taylor Francis Group.

Srinivasan, M. (2004). Streamlined: 14 Principles for Building and Managing the Lean Supply Chain. USA: Thomson.

Tapping, D. (2007). The Lean Pocket Book Handbook for Kaizen Events. USA: MCS Media, Inc.

The article is an adapted excerpt from: Marksberry, P., & Parsley, D. (2011). Managing the IE (Industrial Engineering) Mindset: A quantitative investigation of Toyota’s practical thinking shared among employees. Journal of Industrial Engineering and Management, 4(4), 771-799.

For Production Engineering Manager 0919 job Toyota requires industrial engineering knowledge and experience.

Qualifications and Experience:

Minimum Qualification NQF6 (360 Credits) in an engineering related field
Project management advantageous
Experience in industrial engineering in Assembly environment essential
Good technical knowledge of Assembly production systems
Knowledge of PLC programming advantageous
Knowledge of ISO 9000 & 14001 requirements essential
High level of computer literacy is needed for this position (excel, word, auto cad, sap)