Saturday, December 12, 2015

Green Industrial Policy

Energy Savings Opportunity Scheme (ESOS) - UK



The Energy Savings Opportunity Scheme (ESOS) is an energy assessment and energy
saving scheme and is established by the Energy Savings Opportunity Scheme Regulations
2014 (ESOS Regulations).
The scheme applies to large undertakings and groups containing large undertakings in the
UK.

The qualification date for the first compliance period is 31 December 2014.
A large undertaking is:
- any UK undertaking that meets either one or both of the conditions below:
 it employs 250 or more people1

 it has an annual turnover in excess of 50 million euro (£38,937,777), and an annual
balance sheet total in excess of 43 million euro (£33,486,489)


https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/466515/LIT_10094.pdf



https://www.linkedin.com/pulse/techniques-slash-73-off-your-energy-bill-how-much-do-you-kit-oung

New Technologies to Help in Energy Conservation and Efficiency Improvement









Energy-management system
Advanced analytics
Smart grids

Immersion-cooling technology
Liquid-desiccant systems
Pressurized-plenum-recirculation-air system

Automated-compressor-staging and capacity control systems
Variable-head-pressure controls
Direct-contact water heaters



Power

Ultra-supercritical plants
High-efficiency combined-cycle gas turbine
Trigeneration

Cement

Fluidized-bed advanced-cement-kiln system
Combustion-system improvements (gyrotherm)
High-efficiency grate coolers (reciprocating)
Improved preheating/precalcining

Oil refining and chemicals

Advanced-process control
Membrane gas separation
High-pressure recovery
Steam compressors


Pulp and paper

Advanced-thermomechanical pulping
Heat recovery in thermomechanical pulping
High-consistency paper making
Impulse drying in wet-pressing process


Steel
Coke-dry quenching
Cyclone-converter furnace
Endless-strip production
Top-gas-recycling blast furnace
Mining Automated-mine-ventilation control and

Mining

Automated-mine-ventilation control and air reconditioning
High-pressure grinding rolls
In-pit crushing-conveyance and high-angle conveyance systems
Low-loss conveyor belts
Stirred-media mills

From
McKinsey & Co.

Greening the future: New technologies that could transform how industry uses energy

August 2015

Authors

Harsh Choudhry
Mads Lauritzen
Ken Somers
Joris Van Niel


You can download the report from McKinsey Company website





Wednesday, November 25, 2015

Robust Design - Productivity during Design & Development


Robust Design is an engineering methodology for improving productivity during design & development so that high quality products can be produced at low cost.


Robust Design is an engineering methodology for improving productivity during design & development so that high quality products can be produced at low cost.


Robsut design optimization is systematic and efficient way to meet the challenge design optimization for performance, quality & cost. 

It is capable of

Making product performance insensitive to raw material variation, thus providing scope for  the use of lower grade alloys, 
Making designs robust against manufacturing variation, thus reducing material cost for rework & scrap,
Making the design least sensitive to the variation in operating environment.

It uses a new structured development process so that design engineering time is used more productively.

The Robust Design method uses a mathematical tool called Orthogonal Arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality called signal-to-noise (S/N) ratio to predict the quality from the customer's perspective. 

http://www.casde.iitb.ac.in/mdo/sigmdo/sigmdo3/prior/shyam.php




To be updated using material from Ulrich and Eppinger

Development Cost of Cars - Efficiency Practices and Lean Product Development




January 2014
Maruti invested 5.7 billion rupees ($91.7 million) to develop the Celerio in the belief that Indians want an automatic car. 5.7 billion rupees is equal to Rs. 570 crore.
http://blogs.wsj.com/indiarealtime/2014/01/25/new-maruti-celerio-to-offer-automatic-transmission/



September 2013
Hyundai
Grand i10, which is built upon a new platform with a development cost of nearly Rs 1,000 crore, features India specific dimensions and is 100 mm longer than its European version.
http://businesstoday.intoday.in/story/hyundai-grand-i10-price-features-competition-future-plan/1/198335.html

May 2013
General Motors opened a new $130 million enterprise data center, which will serve as its computing “backbone” for its global operations. The facility is located at its Technical Center in Warren, Michigan.
GM Says the new IT Center Will Reduce Vehicle Development Costs. The company also plans to build another $100 million facility in Milford, Mich.
http://www.automotive-fleet.com/news/story/2013/05/gm-says-new-130-million-it-center-will-reduce-vehicle-development-costs.aspx


Tata Nano
Engine Management System for Tata Nano
http://web.tatatechnologies.com/wp-content/uploads/Nano_SAE.pdf

2006
Chevy Volt Development Cost $1 to 1.2 billion

1999
Mahindra & Mahindra launched its multi-purpose vehicle Xylo
Xylo, with its competitive price ranging from Rs 6.24 lakh to Rs 7.69 lakh, is pitched against MPV (multi-purpose vehicle) market leader Toyota Innova . While Toyota’s low-end Innova E costs Rs 7.60 lakh, the low-end version of Mahindra MPV, Xylo E2, at Rs 6.24, comes with additional comfort features including power steering, power windows and central locking. Toyota’s high-end Innova G4 is priced Rs 9.29 lakh while Mahindra’s high-end variant Xylo E8 costs Rs 7.69 lakh and offers additional comforts including digital drive assist system and flatbed front seats.
Xylo, which was under development for four and a half years, has come out of an all-new platform called Ingenio. The entire product development has cost Rs 550 crore. According to managers of the company, the product development process has improved significantly in the last six and a half years. The development cost of Scorpio and Xylo is the same, even though Xylo was developed recently.

1995
Ford spent an estimated six years and $6 billion developing its world car - the Mondeo/Contour/Mystique.
The Mondeo was launched on November 23, 1992, and sales began on 22 March 1993.
Instigated in 1986, the design of the car cost Ford US$6 billion. It was one of the most expensive new car programs ever. North American models were marketed as the Ford Contour and Mercury Mystique until 2000, and as the Ford Fusion from 2013 onwards.
http://wardsauto.com/news-amp-analysis/ford-limits-cost-new-car-development
http://en.wikipedia.org/wiki/Ford_Mondeo
http://money.cnn.com/magazines/fortune/fortune_archive/1993/06/28/78013/


Corvette 5 Upgrade - Budget $200 million
http://bakerstreetpublishing.com/2014/02/02/design-of-the-c5-corvette-a-product-planning-tutorial/


1987

Product Development in the World Auto Industry
KIM B. CLARK
Harvard University
W. BRUCE CHEW
Harvard University
TAKAHIRO FUJIMOTO
Harvard University


1982
GM-10 Development Project - W-Body by General Motors - $7 billion budget

1975
Ford Fiesta
Development Cost - $1 billion

1969
Ford Management decides to study the possibility of producing a class "B" car, smaller than the European Escort Mk. 1,  The commitment: seven men, $100,000 and 8 months to create a firm proposal.

1970
Lee Iacocca, then President of Ford, and Henry Ford II, Chairman, agree that the proposal looks promising,.

 1972
 Ford Fiesta project is code named "Bobcat." The Ghia design studio in Turin, under De Tomaso, produces styling model which is used in marketing studies. Other pre-prototypes studied are produced in England and Germany, and all are rated along side compeitors. $1.3 million total is spent in marketing studies, including showing prototypes and competitors to 900 customers from 7 countries.

1973
Henry Ford II and Lee Iacocca introduce Bobcat prototype to Ford of Europe staff in Germany 1000 days before start of production. This prototype has styling almost identical to the final production version. Styling is later finalized, with a compromise between two similar Ford Europe design studio efforts approved.

 1974
Construction of an automobile production complex is started in Valencia, Spain to produce Fiesta. Annual capacity to be 400,000 engines, and 300,000 complete automobiles. First prototype Ford Fiesta driven by Henry Ford II and Lee Iacocca.

1975
Ford Fiesta is upgraded in minor ways to exceed the new higher targets set by the latest competition. European pre-production engines produced, and the Ford Fiesta is transferred from the development to production startup stage. Board decides to produce federalized version of the Ford Fiesta at Saarlouis, Germany, for export to the United States. Plans are made to produce 1600cc 'Kent' engines at Dagenham, England, to be shipped to Germany and mated with transmissions made in Bordeaux, France. All to be assembled into Fiestas to be exported to the U.S.

1976
Total Ford Fiesta production: 109,838 units (partial year).
Production is started of 957cc European version, which weighs approx 1650 lbs.

1977
Total Ford Fiesta production: 440,969
Sales of U.S. Fiestas begin, 1978 model year designation. Four model variants are available: Base, Decor, Sport and Ghia. All have the same engine and four speed manual transmission, with interior trim and instrumentation being the primary differences. The exceptions are the Sport model, which includes stiffer shock valving and a 12mm. anti-sway bar at the rear, and the Ghia which includes servo assisted brakes.
http://archive.is/54YD



Why does it cost upward of a billion dollars to develop a new car?


Car companies have to spend enormous amounts developing new models. The price tag to develop a new vehicle starts around $1 billion. According to John Wolkonowicz, Senior Auto Analyst for North America at IHS Global, "It can be as much as $6 billion if it's an all-new car on all-new platform with an all-new engine and an all-new transmission and nothing carrying over from the old model." $6 billion was spent by Ford in developing Monde model during 1986-1993.

Thousands of parts have to work every time one turns the key and every time one presses the accelerator and every time one presses the brake. And they have to do it for about 15 years. And they also have to pass all the government inspections.

When an automaker designs a new car, it has to identify consumer tastes a few years down the road, and  also it has to create a car that is feasible to produce on an assembly line and still make a profit.

A new car development team usually includes a few hundred of engineers, split into such groups as chassis and body, suspension, drivetrain, control systems and other major subsystems. Other teams may be dedicated to control noise, vibration and harshness, meeting government regulations, or finding the most ergonomically correct setup for the widest variety of differently sized humans that could get behind the wheel. With the rise of in-car infotainment systems, there are engineers working on the latest gadgets to include in the car.

Lot testing goes in the development process. They test, test, and test some more until they get it right. They test to meet performance requirements. They test for durability. They test for fuel mileage. They test for aerodynamics. They test for safety compliance. Testing costs money.

Today many tests can be done on the computer before prototypes are built, but those computers and the software cost more money and eventually, real-world tests must be done and unique prototypes must be built. Some of that real-world testing can take place at automakers' private proving grounds or closed test tracks, but the need to test in extreme weather conditions lures them to the roasting desert of Death Valley and the frigid winter of Lapland. The logistics of getting humans, prototypes and test equipment to these regions does not come cheap, either.

You will find designers (interior and exterior), model makers, marketing people, manufacturing specialists, assembly line workers, industrial engineers,  purchasing analysts, and number of outside consultants and also number of accountants -- working on new product development at any given time. You require many executive decision makers. There is also support staff assisting with human resources, IT and other essential services of a modern corporation. As a part of development assembly plants have to designed and tooling to stamp parts out has to be created.

At an average total compensation for each engineer, designer, accountant, marketing person and executive  in the neighborhood of $100,000 per year (counting benefits such as medical insurance, pensions, education, vacation and other perks) and a team of 1,000 people would mean $100,000,000 per year.  With four years to develop a car, that's at least $400,000,000 for compensation alone. Those employees need computers, office space, engineering laboratories and many  other resources required to design and engineer such a complex machine. The mobile bill alone is probably in the neighborhood of a million bucks a year for such a group. One billion dollars can be easily accounted for.

Re-tooling a factory can easily eclipse the human cost of developing a new car.

In the Book "The Machine That Changed the World" Womack et al. note that average American producer requires 60.4 months and 903 employees to come out with a new car design. The prototype lead time is 12.4 months and die development time is 25 months.


http://translogic.aolautos.com/2010/07/27/why-does-it-cost-so-much-for-automakers-to-develop-new-models/



Related Articles by Narayana Rao

Lean Product Development and Product Development Productivity - Bibliography


To be updated

25 Nov 2015, 22 feb 2014

Lean Product Development and Product Development Productivity - Bibliography



Siemens NX 9 Delivers up to 5X Product Development Productivity across Industries
Technology Breakthroughs Establish New Flexibility and Productivity Paradigms for Working with 2D Data and Massive Assemblies
New Functionality Expands NX Leadership in Freeform Shape Design, PLM Integration, and Product Development Decision-Making
PLANO, Texas, October 14, 2013
http://www.plm.automation.siemens.com/en_in/about_us/newsroom/press/press_release.cfm?Component=212122&ComponentTemplate=822


Sustaining LPD program - A Presentation - Katherine Radeka
http://www.norskindustri.no/Global/Dokumenter/KBD2013KatherineRadeka.pdf


Book - Design Productivity Debate - 1996 - Alex H.B. Duffy
Preview Google Book
https://books.google.co.in/books?id=cmjgBwAAQBAJ&printsec=frontcover#v=onepage&q&f=false



Ebsco

Improving the NPD Process by Applying Lean Principles: A Case Study.
By: Nepal, Bimal P.; Yadav, Om Prakash; Solanki, Rajesh. Engineering Management Journal. Sep2011, Vol. 23 Issue 3, p65-81. 17p. 4 Diagrams, 9 Charts, 1 Graph.

A Framework for Organizing Lean Product Development.   Full Text Available
By: Hoppmann, Joern; Rebentisch, Eric; Dombrowski, Uwe; Thimo Zahn. Engineering Management Journal. Mar2011, Vol. 23 Issue 1, p3-15. 13p. 3 Charts.

Lean Product Development Research: Current State and Future Directions.   Full Text Available
By: León, Hilda C. Martínez; Farris, Jennifer A. Engineering Management Journal. Mar2011, Vol. 23 Issue 1, p29-51. 23p. 2 Diagrams, 7 Charts, 1 Graph.

A Multilevel Framework for Lean Product Development System Design.   Full Text Available
By: Letens, Geert; Farris, Jennifer A.; van Aken, Eileen M. Engineering Management Journal. Mar2011, Vol. 23 Issue 1, p69-85. 17p. 4 Diagrams, 2 Charts.

Lean Product Development as a System: A Case Study of Body and Stamping Development at Ford.   Full Text Available
By: Liker, Jeffrey K.; Morgan, James. Engineering Management Journal. Mar2011, Vol. 23 Issue 1, p16-28. 13p. 3 Diagrams.

Improving the NPD Process by Applying Lean Principles: A Case Study.   Full Text Available
By: Nepal, Bimal P.; Yadav, Om Prakash; Solanki, Rajesh. Engineering Management Journal. Mar2011, Vol. 23 Issue 1, p52-68. 17p. 5 Diagrams, 7 Charts, 2 Graphs.

The Toyota Way in Services: The Case of Lean Product Development.   Full Text Available
By: Liker, Jeffrey K.; Morgan, James M. Academy of Management Perspectives. May2006, Vol. 20 Issue 2, p5-20. 16p. 1 Diagram, 3 Charts. DOI: 10.5465/AMP.2006.20591002.

Rediscovering the kata way. (cover story).   Full Text Available
By: SOLTERO, CONRAD. Industrial Engineer: IE. Nov2012, Vol. 44 Issue 11, p28-33. 6p. 1 Color Photograph, 2 Diagrams, 1 Chart.

The Principles of Product Development Flow: Second Generation Lean Product Development by Donald G. Reinertsen.   Full Text Available
By: Radeka, Katherine. Journal of Product Innovation Management. Jan2010, Vol. 27 Issue 1, p137-139. 3p. DOI: 10.1111/j.1540-5885.2009.00705_1.x

MAXIMIZING PRODUCTIVITY IN PRODUCT INNOVATION.   Full Text Available
By: Cooper, Robert G.; Edgett, Scott J. Research Technology Management. Mar/Apr2008, Vol. 51 Issue 2, p47-58. 12p.


Emerald


 Johannes Hinckeldeyn , Rob Dekkers , Jochen Kreutzfeldt , (2015) "Productivity of product design and engineering processes: Unexplored territory for production management techniques?", International Journal of Operations & Production Management, Vol. 35 Iss: 4, pp.458 - 486



Focus on implementation: a framework for lean product development
Type: Conceptual paper
Author(s): L. Wang, X.G. Ming, F.B. Kong, D. Li, P.P. Wang
Source: Journal of Manufacturing Technology Management Volume: 23 Issue: 1 2012

Rethinking lean NPD: A distorted view of lean product development
Type: General review
Source: Strategic Direction Volume: 23 Issue: 10 2007

Towards lean product lifecycle management: A framework for new product development
Type: Conceptual paper
Author(s): Peter Hines, Mark Francis, Pauline Found
Source: Journal of Manufacturing Technology Management Volume: 17 Issue: 7 2006



Updated  25 Nov 2015, 19 Feb 2014

Lean Product Design - How Toyota Designs Cars - Womack, Jones and Roos



Chapter 3 Content

Product Development and Engineering in Lean Enterprise


Ohno and Toyoda decided early that product engineering inherently encompassed both process and industrial engineering.. They formed product design teams with experts from process and industrial engineering teams. Career paths were structured so that rewards went to strong team players without regard to their function. The consequence of lean engineering  was a dramatic leap in productivity, product quality and responsiveness.

Lean Production and Changing Consumer Demand

Toyota's flexible production system and its low cost and time product engineering let the company supply the product variety that buyers wanted with little cost penalty. In 1990, Toyota offered consumers around the world as many products as General Motors even though Toyota was only half of GM's size. Toyota requires only half the time and effort required by GM to design and produce a new car. So Toyota can offer twice as many vehicles with the same development budget.  Japanes car makers offer as many models as all of the Western firms combined.  The product variety offered by Japanese is growing where that offered by Western companies is shrinking.

Japanese on an average are producing 500,000 copies in four years, whereas western companies making 2 million copies in 10 years.

Toyota is making profit by producing only two-thirds of the life-of-the-model production volume of European specialist firms and therefore it can attack the craft-based niche producers like Aston Martin and Ferrari. American mass producers could not attack them due to insufficient volume.


Chapter 5  Designing the Car

Honda's product development process is different from that of General Motors. The Large Project Leader in charge of car development is given great power. He recruits appropriate persons from various functional departments for the life of the project.

In 1986, Professor Kim Clark of Harvard Business School undertook a world wide survey of product development activities in motor industry. Clark found that a totally new Japanese car required 1.7 million hours engineering effort on average and took forty-six months from first design to customer deliveries. By contrast, the average U.S. and European proect of comparable complexity took 3 million engineering hours and consumed sixty months.  Thus the Japanese methods have a two-to-one difference in engineering effort and a saving of one-third in development time. It turns on its head one of our most common assumptions. A project can be speeded up with increase in cost and effort.

The authors say there are four basic differences between lean design and western design methods.

1. Leadership of the product design team
The lean producers invariably employ some variant of the Shusa system pioneered by Toyota (Honda terms it Large Project leader (LPL)). The Shusa is the leader of the team and his job is to design and engineer a new product and get it fully into production. In Japanese auto industry, the cars are commonly known by the Shusa's name.

2. Teamwork
In American or European companies 900 engineers are involved in a typical project over its life, but Japanese companies use only about 485 engineers. But importantly, there is little turnover in the Japanese teams. There is more turnover in American teams.

3. Communication
In the best Japanese lean project, the numbers of people involved are highest at the very outset. Difficult trade-offs are decided at the start stages of the project.  As development proceeds, the number of people involved drops as some specialties complete the job.

4. Simultaneous Development

Example of Die development:
The die designers in Japanese projects are in direct, face to face contact with the design team and they know the number of panels to be made and approximate sizes. So they go ahead and order blocks of die steel in parallel to the design process. They even make rough cuts before the detailed design of the panels is done.

The Consequences of Lean Design in the Market Place

Lean design companies can offer a wider variety of products and replace them more frequently that mass-production competitors. The Japanese firms are using their advantage in lean systems to expand their product range rapidly, even as they renew existing products every four years. Between 1982 and 1990, they nearly doubled their product portfolio from forty-seven to eighty-four models.


Training of Engineers in Japan

All engineers including design engineers first assemble cars. At Honda, for example all entry-level engineers spend their first three months in the company working on the assembly line. The're then rotated to the marketing department for the next three months.  Then they spend an year in various engineering departments - drive train, body, chassis and process machinery. Then design engineer's assignment starts in an engineering department. As a first assignment, they are assigned to a routine new-product development team. In the next assignment they may be put on a more challenging task.  After this, they are given additional academic inputs and then put on advanced projects, which involve using revolutionary and advanced materials.

But Honda, asks all its engineers to spend one month in operations and ensures that even people working in advanced technologies are connected to the current demands of  the market.


Japanese Became High-Tech Wonders

Not only in manufacturing, even in design practice Japanese have a gone a notch or two ahead of its Western Competitors.

Japanese bet on increase in fuel prices and made investments in small four cylinder engines. But fuel prices fell and consumers were looking for larger cars with more power. Japanese engineers made use of many known technologies to increase power of four cylinder engines.  There features were: fuel injection rather than carburettors, four valves per cylinder, balance shafts in the bottom of the engine, turbochargers and superchargers. a second set of overhead cams, and even an additional set of cams. The engineers work very hard on what is known as refinement - paying attention to the smallest details of an engine design that gives better performance. Finally, attention was given to manufacturability so that complex engines work properly every time.  These innovations convinced buyers in North America that Japanese cars are now high-tech. When the American producers wanted to do similar innovations, problems have cropped up.

Japanese companies are now having patents than American companies in automobiles.

So far, Japanese have not made epochal innovations. They did a brilliant scavenging process that used ideas nearly ready for the market. How will they fare in more difficult challenges? The authors concluded..






http://news.bbc.co.uk/2/hi/business/6346315.stm

http://www.lean.enst.fr/wiki/pub/Lean/LesPublications/LeanDevBalleBalle.pdf

http://www.sae.org/manufacturing/lean/column/leanfeb02.htm

Set-based concurrent engineering
http://sloanreview.mit.edu/article/toyotas-principles-of-setbased-concurrent-engineering/



To be updated

25 Nov 2015, 20 Oct 2013

Sunday, September 13, 2015

Industrial Engineering and Productivity Improvement - Coal Mining Sector - by - Prof K.V.S.S. Narayana Rao




How to improve supply chain productivity for Miners: Part Two
http://www.logiworx.com.au/latest-news/the-worx-article/t/how-to-improve-supply-chain-productivity-for-miners:-part-two-/i/17/?p=1

Mining in the 21st Century - Quo Vadis
19th World Mining Congress 2003

First Keynote Address on Sustainable Development and Coal Mining. Important.
https://books.google.co.in/books?id=BKu9u51lVE0C&printsec=frontcover#v=onepage&q&f=false



UNIONISM AND PRODUCTIVITY IN WEST VIRGINIA COAL MINING: A LONGER VIEW
William M. Boal* July 2014
Coal was a vital industry, employing 860,000 workers in the U.S. at its peak in 1923, and the United Mine Workers of America was a huge union, counting 422,000 dues-paying members in the U.S. at its peak in 1921.

The paper examines the effect of unionism on productivity in coal mines of west virginia. It did not give any numerical estimates of productivity per employee in any year of the study.
aeaweb.org  2015 annual meeting paper. It can be downloaded from aeaweb.org
https%3A%2F%2Fwww.aeaweb.org%2Faea%2F2015conference%2Fprogram%2Fretrieve.php%3Fpdf

2010
Desk Reference: Rock Mechanics, Drilling & Blasting
Agne Rustan, Claude Cunningham, William Fourney, Alex Spathis, K.R.Y. Simha
CRC Press, Nov 10, 2010 - 466 pages
https://books.google.co.in/books?id=LMTLBQAAQBAJ



1996
K.S. Prakasha Rao, Modelling and simulation of coal extraction and transportation system, Industrial Engineering Journal, July 1996, Vol 25, No 7, pp 13-20 (along with P. Subramaniam)


Great Britain - 1987

Saleable coal per man shift (OMS - output per shift) in coal mines during September 1983 was 2.44 tonnes. Two years later, it increased to 2.71 tonnes. During 1986/7, it averaged 3.29 tonnes. In March 1987, it increased to record level of 3.76 tonnes. It is a striking rise in productivity in three and half years as compared to long term trend.



Efficiency and Capacity of Boilers
Chapter of Steam: Its Generation and  Use
http://www.gutenberg.org/files/22657/22657-h/chapters/efficiency.html

Productivity Change in the Coal Industry and the New Industrial Relations
Ray Richardson and Stephen Wood
British Journal of Industrial Relations
Volume 27, Issue 1, pages 33–55, March 1989
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8543.1989.tb00207.x/abstract



1983
Mine Management  - The Book has focus on productivity
by Douglas Sloan
https://books.google.co.in/books?id=8l__CAAAQBAJ&printsec=frontcover#v=onepage&q&f=false



Coal Mining Process and Methods



Websites

http://emfi.csmspace.com/  -


2013
Modern American Coal Mining: Methods and Applications
Bise, Christopher J.
SME, Oct 18, 2013 - 576 pages
Modern American Coal Mining: Methods and Applications covers a full range of coal mining and coal industry topics, with chapters written by leading coal mining industry professionals and academicians. Highlights from the book include coal resources and distribution, mine design, advances in strata control and power systems, improvements in surface mining, ventilation to reduce fires and explosions, drilling and blasting, staffing requirement ratios, management and preplanning, and coal preparation and reclamation.

The text is enhanced with 11 case studies that are representative of underground and surface mines in the United States. Narrative descriptions and appropriate mine plans are presented, with attention given to unique features and situations that are addressed through mine design and construction. A useful glossary is included, as are many examples, figures, equations and tables, to make the text even more useful.
https://books.google.co.in/books?id=bZKvAQAAQBAJ



2012
Design of Underground Hard-Coal Mines
J. Pazdziora
Elsevier, Dec 2, 2012 - 246 pages

The escalating worldwide demand for energy has had the effect, among other things, of promoting the development of coal mining. In some countries specialist design offices were set up and students trained as specialists in mine design and construction. Poland, a country having mining traditions stretching over many centuries, is a good example, and has gained a place in the forefront, not only as a coal producer and exporter, but also as an originator and exporter of technical mining know-how. The author of this book has himself had 25 years of practical experience in mine design, in the supervision of mining investment implementation both at home and abroad, and also in directing the activities of the Chief Mine Design and Studies Office in Poland, plus more than 20 years' teaching experience in the training of mining engineers, in particular as head of the Mine Design Department of the Mining Faculty at the Silesian Polytechnic University in Gliwice. This vast wealth of experience has prompted him to write the present book which discusses the basic problems met with in the design of underground hard-coal mines.

The author's primary aim has been to deal with all those questions in mine design which have not yet been answered in mining textbooks and which, from his own personal experience, he considers to be of importance. Accordingly, he presents the general principles governing the design of new mines and the reconstruction of working mines, the development of mining regions, the design of coal-preparation plant, and energy economy in mines. Making use of the broad experience gained by the Polish mining industry in the implementation of mining investment projects, he has quoted several examples of technical and organizational solutions which effectively shorten the mine construction cycle.

The book is addressed chiefly to investors and engineers engaged in preparing plans for the development of mining regions, for the construction of new mines, and the reconstruction of existing mines and preparation plants, as well as to students in mining departments of technical schools and universities. The information offered here is of great practical value and may well stimulate the development of new ideas for design and implementation concepts.
https://books.google.co.in/books?id=sRk7AAAAQBAJ


Measuring Coal Supply in a Power Plant - Issues
https://blogs.siemens.com/measuringsuccess/stories/130/


2010
International Coal Preparation Congress 2010 Conference Proceedings
Rick Q. Honaker
SME, 2010 - 978 pages

This 992-page book is a compilation of 118 state-of-the-art technical papers presented at the industry's most prestigious gathering. A CD containing the full text is included. Read what coal preparation experts from 20 countries have to share on a variety of current issues, including: • Water-based coal processing facilities and a review of plant designs and operations used throughout the world.• Breakthroughs in dense medium separations, water-based separation processes, froth flotation, and de-watering.• New wear-resistant materials proven to help plant operators reduce maintenance costs, elevate plant availability, and maintain a high level of process efficiency.• Groundbreaking methodologies that maximize the amount of coal recovered while meeting the required product specifications.• The processing and potential uses of waste.• Innovative online monitoring and control methods and the latest on the application of modeling and simulation.• Advancements in technologies that can upgrade coal without the use of water, including density-based, thermal, and optical dry cleaning.• And much, much more.
https://books.google.co.in/books?id=O9jyn-45eoAC

2007

Coal: Research and Development to Support National Energy Policy
Chapter 4 Coal Mining and Processing
National Academies Press Book
http://www.nap.edu/openbook.php?record_id=11977&page=58





1992
Manual of pillar extraction
http://www.resourcesandenergy.nsw.gov.au/__data/assets/pdf_file/0004/419512/MDG-1005-part-1-of-2.pdf





India - Coal Mining Technologies

Coal Mining technologies - Tribal Energy and Environment Information
http://teeic.indianaffairs.gov/er/coal/restech/tech/index.htm




Industrial Engineering Methods in Coal Mining



Product Design Efficiency



Application of Value Engineering in Optimizating Mine Production System Capacity
Dai, Shao-jun; Hao, Chuan-bo
2nd International Conference on Value Engineering and Value Management, 2009/10/16-2009/10/17, pp93-99, 2009.
In the process of checking production capacity, coal mine has surplus production capacity in some parts of production systems or processes, and it causing unnecessary resource wastes; therefore it is essential to optimize production capacity of coal mine production system which having much more resources wastes. In order to solve the problem, the paper propose that it used value engineering method to estimate the cost, function and value of optimize scheme of coal mine production system capacity, established model of choosing experts and optimizing model of coal mine production system capacity, then took and analyzed an example. The result shows that value engineering method is suitable for optimizing coal mine system capacity and it can guide coal mine practical...












Methods Efficiency


International Journal of Scientific and Research Publications, Volume 4, Issue 10, October 2014 1
ISSN 2250-3153
www.ijsrp.org
Optimum Utilisation of Continuous Miner for Improving Production in Underground Coal Mines
Vijaya Raghavan*, Dr Syed Ariff**, Paul Prasanna Kumar***
*Department of Mining Engineering, Dr.Thimmaiah Institute of Technology, Oorgaum, Kolar Gold Fields-563120
**Assistant Professor, Professor, Senior Lecturer.
***Department of Mining Engineering, Dr.T.Thimmaiah Institute of Technology, Oorgaum, Kolar Gold Fields-563120
http://www.ijsrp.org/research-paper-1014/ijsrp-p3464.pdf

raghavan_pp  at rediffmail.com  -  Vijaya Raghavan


Analysing the Benefits of Value Stream
Mapping in Mining Industry
N. Pavan Kumar
Team Lead, Cyient Ltd., Plot No.11, Software Units Layout, Infocity, Madhapur, Hyderabad, Telangana, India.
http://www.ijirset.com/upload/2014/october/35_Cost.pdf



PRODUCTIVITY IMPROVEMENT IN UNDERGROUND COAL MINES – A CASE STUDY
Devi Prasad Mishra1*
, Mamtesh Sugla2
, Prasun Singha3
1 Department of Mining Engineering, Indian School of Mines (Dhanbad, Jharkhand, India)
2 JPMorgan India Pvt Ltd, Mafatlal Centre, Nariman Point (Mumbai, Maharashtra, India)
3 Marandoo Mine, Rio Tinto Iron Ore (Pilbara Region, Western Australia, Australia)
* Corresponding author: devi_agl @ yahoo.com, tel.: +91 9430191673, fax: +91 326 2296628/2296563

Journal of Sustainable Mining
J. Sust. Min. Vol. 12 (2013), No. 3, pp. 48–53
http://kwartalnik.gig.eu/sites/default/files/articles/en/jsm_130306_full_text.pdf

Industrial Engineering Optimization


2010
Optimizing through value driver modelling - PWC
http://www.pwc.com.au/industry/energy-utilities-mining/assets/ValueDriverModelling-Nov10.pdf

2007
OPTIMIZATION OF BLASTING PARAMETERS
IN OPENCAST MINES
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF TECHNOLOGY IN MINING ENGINEERING
 BY
MANMIT ROUT & CHINMAY KUMAR PARIDA
DEPARTMENT OF MINING ENGINEERING, NATIONAL INSTITUTE OF TECHNOLOGY
ROURKELA-769008
2007
http://ethesis.nitrkl.ac.in/4287/1/Optimization_of_Blasting_Parameters_in_Opencast_Mines_06.pdf


1987
LI, Z. and TOPUZ. E. Optimizing design capacity and field dimensions of underground coal mines. APCOM 87. Proceedings of the Twentieth International Symposium on the Application of Computer and Mathematics in the Mineral Industries. Volume I: Mining. Johannesburg. SAl MM. 1987. pp. 115 - 122.
http://www.saimm.co.za/Conferences/Apcom87Mining/115-Li.pdf

Industrial Engineering Statistics


2008
Risk Management in Mines - The Six Sigma Way
S. K. Sinha
Indian Institute of Coal Management, India
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1025&context=coal

Industrial Engineering Economics


American Journal of Industrial and Business Management, 2014, 4, 31-39
Published Online January 2014 (http://www.scirp.org/journal/ajibm)
Introduction of Innovative Equipment in Mining: Impact
on Productivity
Bryan Boudreau-Trudel1, , Kazimierz Zaras2, , Sylvie Nadeau1, , Isabelle Deschamps3
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=42314


Soviet Mining
November–December, 1989, Volume 25, Issue 6, pp 577-582
Effect of the efficiency of capital expenditures on the optimal design output of a mine
A. A. Ordin
http://link.springer.com/article/10.1007%2FBF02528313

Human Effort Engineering


Mining Publication: Ergonomics and Mining: Charting a Path to a Safer Workplace
Original creation date: September 2006

Image of publication Ergonomics and Mining: Charting a Path to a Safer Workplace
Ergonomics processes described in the literature have been associated mostly with manufacturing, financial, electronics, and office settings where working conditions tend to be rather constant and repetitive. The information presented in this document demonstrates, however, that an ergonomics process can also be implemented in a setting such as mining where working conditions frequently change and workers are periodically exposed to extreme weather conditions. This document describes how Bridger Coal Company implemented an ergonomics process at its Jim Bridger Mine from 2001 through 2004. The process developed by the Ergonomics Committee, the promotion of the process to management and employees, and the impacts of the process on working conditions at the mine are reviewed. Barriers overcome and lessons learned are also described. Quotes from Bridger Coal Company employees are included in the document to add a personal perspective. Other industries with working conditions similar to mining, such as construction and agriculture, may find this information useful.

Authors: J Torma-Krajewski, LJ Steiner, P Lewis, P Gust, K Johnson
http://www.cdc.gov/niosh/mining/works/coversheet1686.html

Work Measurement, Cost Measurement, and Productivity Measurement



Time Studies in Underground Coal Mining by Ludwig W. Koch
University of Utah - MS Thesis in Department of Mining and Geological Engineering
December 1958
http://content.lib.utah.edu/utils/getfile/collection/etd1/id/52/filename/236.pdf

Management of IE Studies, Projects



Productivity Measurement

Productivity in the Mining Industry: Measurement and Interpretation
Productivity Commission Staff Working Paper
December 2008
http://www.pc.gov.au/research/completed/mining-productivity/mining-productivity.pdf

India - Cola Mining Companies


The Singareni Collieries Company Ltd. is a Government owned public sector company with around 69000 employees.It is the second largest coal producing company in India.It is situated in the state of Andhra Pradesh,India.   Presently, company operates 36 underground coal mines and 14 opencast mines.

The Superintending Engineer, Industrial Engineering
Dept,.O/o. The Singareni Collieries Ltd., GM's Office,
Mandamarri, Dist., Adilabad Dist.-504 231., AP


Related Article

Mining - Productivity, Industrial Engineering and Lean Production
http://nraoiekc.blogspot.com/2014/02/mining-productivity-industrial.html


Updated  20 June,  12 June,  21 April 2015
First published on 28 March 2015

Improving R & D Productivity


Nature Reviews Drug Discovery 9, 203-214 (March 2010) | doi:10.1038/nrd3078

How to improve R&D productivity: the pharmaceutical industry's grand challenge
See also: Correspondence by Denee et al.

Steven M. Paul1, Daniel S. Mytelka1, Christopher T. Dunwiddie1, Charles C. Persinger1, Bernard H. Munos1, Stacy R. Lindborg1 & Aaron L. Schacht1


http://www.nature.com/nrd/journal/v9/n3/full/nrd3078.html

Thursday, September 10, 2015

A Study of the Toyota Production System from an Industrial Engineering Viewpoint - Shigeo Shingo - Google Book



http://books.google.co.in/books/about/A_Study_of_the_Toyota_Production_System.html?id=RKWU7WElJ7oC

The first and only book in English on JIT, written from the industrial engineer's viewpoint. When Omark Industries bought 500 copies and studied it companywide, Omark became the American pioneer in JIT.

Here is Dr. Shingo's classic industrial engineering rationale for the priority of process-based over operational improvements in manufacturing. He explains the basic mechanisms of the Toyota production system, examines production as a functional network of processes and operations, and then discusses the mechanism necessary to make JIT possible in any manufacturing plant.

#Provides original source material on Just-in-Time
#Demonstrates new ways to think about profit, inventory, waste, and productivity
#Explains the principles of leveling, standard work procedures, multi-machine handling, supplier relations, and much more
#If you are a serious student of industrial engineering, you will benefit greatly from reading this primary resource on the powerful fundamentals of JIT.

Table of Contents


Chapters

Mechanism of the production function
Improvement of process
Improvement of operation
Development of non-stock production
Interpretation of the Toyota Production System
Mechanism of TPS
Development of a "kanban" system
Regarding TPS
Course of TPS
Introduction and development of TPS
Summary



My Summary of the book

Industrial Engineering in Toyota Production System - Lean Production
http://nraoiekc.blogspot.in/2013/12/toyota-production-system-industrial.html


Detailed Table of Contents



1. Introduction
           Production Mechanism
2. Improving  process
           Process Elements
                 Basic Process Analysis
           Process Improvement
           Improving Inspection
           Transport Improvement
           Eliminating Storage (Delays)
3. Improving operations
           Common Factors in Operations
           Improving Setup (Exchange of Dies and Tools)
           Improving Principal Operations
                 Separating worker from Machine
                 Development of Pre-automation or Autonomation
                 Improving Margin Allowances

4. Conclusions on Developing Non-stock production
            Naturally Occurring Stock
            "Necessary Stock"
Interpretation of the Toyota Production System

5. The Principles of the Toyota Production System
           What is the Toyota Production System?
           Basic Principles
                 Waste of Overproduction
                 Just-in-Time
                 Separation of Worker from Machine
                Low Utilization Rates
                 Perform an Appendectomy
           Fundamentals of Production Control
                 Adopting a Non-Cost Principles
                 Elimination of Waste
                 Mass Production and Large Lot Production
                 The Ford and Toyota Systems Compared

6. Mechanics of the  Toyota Production System: Improving Process - Schedule Control and Just-in-Time
             Schedule Control and Just-in-Time
                   Production Planning
                   Schedule Control and Stockless Production
                   Adopting SMED
                   Flexibility of Capacity
                   Elimination of Defects
                   Eliminating Machine Breakdowns

7.  Mechanics of the  ToyotaProduction System: Improving Process - Leveling and the Nagara System
             What is Leveling?
                    Balancing Load and Capacity
                    Segmented and Mixed Production
                    Segmented Production Systems and Small Lot Production Systems
                    The Toyota Complex Mixed Production System
                    Lveling and Non-Stock
              The Nagara System

8. Mechanics of the  ToyotaProduction System: Improving Operations
             Components of Operations
                    Preparation and After-Adjustment
                    Principal Operations
                    Marginal Allowances
             Standard Operations
                    Standard Operations and Toyota Production System
                    Three Temporal Aspects of Standard Operations
             From Worker to Machine
             Manpower Cost Reduction
                    Improving Methods of Operation

Development of a "kanban" system
Regarding TPS
Course of TPS
Introduction and development of TPS
Summary



Updated 10 Sep 2015
First Published  16 Sep 2014




Wednesday, September 9, 2015

Toyota Production System - Origin and Development - Taiichi Ohno

The success of Toyota in cost reduction, productivity improvement, and international competitiveness and its celebrated Toyota Production System, fulfilled the dream of Yoichi Ueno (that Japan can guide US in improved practices of efficiency improvement). The success of #Toyota and the World Class #TPS was  built on the sustained efforts many Japanese persons who understood Taylor and Gilbreth's writings and improvised them in implementing them in Japanese companies.





Toyota Production System - 2015 Reading by KVSS Narayana Rao

1. Paper by Sugimori in 1977 in IJPR

Mutagenization of Toyota Production System: The Story of Hyundai Motor Company
Byoung-Hoon Lee†, Hyung-Je Jo‡
† Department of Sociology, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul, 156-751, South Korea.
‡ Department of Sociology, Ulsan University

The Contradictions That Drive Toyota’s Success
Hirotaka Takeuchi, Emi Osono, and Norihiko Shimizu
FROM HBR, THE JUNE 2008 ISSUE
Hirotaka Takeuchi (htakeuchi@hbs.edu) is a professor at Harvard Business School. They are the authors of The Knowledge-Creating Company (Oxford, 1995).
Emi Osono (osono@ics.hit-u.ac.jp) is an associate professor;
and Norihiko Shimizu (nshimizu@ics.hit-u.ac.jp) is a visiting professor at Hitotsubashi University’s Graduate School of International Corporate Strategy in Tokyo. 
This article is adapted from their book Extreme Toyota: Radical Contradictions That Drive Success at the World’s Best Manufacturer, John Wiley & Sons.


____________________________________________________________


Summary of What Taiichi Ohno Shared in His Book


I. Starting From Need


"Catch Up With America" Toyoda Kiichiro (1894-1952)


15 August 1945 . Japan lost the war. Toyoda Kiichiro, President of theToyota Motor Company said, "Catch up with America in three years. Otherwise, the automobile industry of Japan will not survive"


Just-In-Time


The basis of the Toyota production system is the absolute elimination of waste. The two pillars needed to support the system are:

Just in time
Autonomation - Intelligent machine that does not produce defect and also stops on it own. Also intelligent operator that do not produce defective parts and investigate and remove the root cause whenever a defective part is produced.

Just in time system eliminates one of the seven wastes specified by Ohno. In an assembly flow process, the right parts needed reach the appropriate place at the time they are needed, inventories can be reduced drastically even up to zero. But to reach the JIT ideal, many existing conventional management methods have to be changed.

Using a Common-Sense Idea

The common sense idea is making only those components demanded or used by the downstream process.

Ohno said, I am fond of thinking about a problem over and over.  The normal planning and production process is for the component producer to produce as per plan and keep it inventory for the assembly department to draw when needed. But Ohno changed this method. Assembly department will go and take what they want and component department has to replenish that component only. So component department has no independent plan. Only assembly department has the plan. Every link in the production flow process or chain is connected with this method and synchronized. With this practice, the management work force is reduced drastically. This information system is given the name kanban.

Give the Machine Intelligence


At Toyota,  machines automated along with an automatic stopping device in case of a problem
 are utilized. In this way, human intelligence is given to machines. The machine stops in case of a problem and the management will come to know of it. Expanding the rule, even operators are asked to stop the flow, if there is a problem. Rapid counter measures are taken to prevent recurrence of a problem.

The Power of Individual Skill and Teamwork


A champion team must have good teamwork and people with individual skill. Likewise autonomation is individual machine skill and JIT is teamwork.

Cost Reduction is the Goal


Frequently we use the word "efficiency" when talking about production, management, and business. "Efficiency" means cost reduction. At Toyota, profit can be obtained only by reducing costs.  We cannot set prices based on our costs.  Consumer sets the price and if the manufacturer sets a higher price due to his high manufacturing cost, the consumer will simply turn away. Cost reduction has to be the goal of manufacturers. The management has to develop human resources ability to its fullest capacity to best enhance creativity, and fruitfulness, to utilize facilities and machines well, and to eliminate all waste.

The Illusion of Japanese Industry


Japanese industry believed in mass production. Till 1973 oil crisis, Japanese manufacturers had the illusion that this system fits their needs


Establishing a Production Flow


Establishing production flow in machine shop was difficult. But in 1947, Ohno arranged machines in a flow order and tried having one worker operate three or four machines (different machines). Even though working time did not go up, operators did not like the new system. Also Ohno wrote, that many adjustments that an operator has to make to machine created difficulties for the operators.  Hence, Ohno said he became patient to implement the system even though he was convinced that the direction was right.

Production Leveling


We got the idea that we should spread production evenly throughout the workday.  We wanted to get away from having to produce everything around the end of the month.

In the Beginning There was Need.


The key to progress in production improvement, I feel, is letting the plant people feel the need.
Opportunities to take care of the needs are always there. Once a need if felt, we just have to drive ourselves to find the practical opportunities that satisfy the needs.

A Revolution in Consciousness Is Indispensable


A person in business may feel uneasy about survival in this competitive society without keeping some inventories of raw materials, work-in-progress, and products. But Ohno says a revolution in consciousness is needed to realize that overproduction and the consequent inventory is a waste that has to be eliminated rather than accumulated.

2. Evolution of the Toyota Production System


Repeating Why Five Times


By asking why five times and answering it each time, we can get to the real cause of the problem, which is often behind behind more visible symptoms.

May be we can interpret it as  prevention - appraisal - failure model. We see failure. We need to know ways to prevent the event very early in the event sequence.

Complete Analysis of Wastes


Improving efficiency makes sense only when it is tied to cost reduction. The efficiency of each operator has to be improved, each production line has to be improved and efficiency of the entire plant has to be improved due to them.

       Waste of overproduction
       Waste of time on hand (waiting)
       Waste in transportation
       Waste in processing itself
       Waste of stock on hand (inventory)
       Waste of Movement
       Waste of making defective products

Ohno made the statement that eliminating these seven wastes completely can improve the operating efficiency by a large margin. To eliminate these wastes, we must make only the quantity needed, thereby releasing extra manpower. Management has to identify excess manpower and utilize it effectively in other activities. Eliminating wasteful and meaningless jobs and creating useful jobs enhances the value of work for workers.


My Plant-First Principle


A proper work procedure cannot be written from a desk. It must be tried and revised many times in the production plant. Production managers have to be in the plant which is a major source of information.

Writing the Standard Work Sheet Yourself


Standard work sheet is basis for all improvements in Toyota production system. Improving machining processes, improving tools, improving transportation processes, and optimizing the inventory, rearranging machines, all such things are implemented through standard work sheets only. The job of the field supervisor, section chief or group foreman is to train workers in standard work. The trainer must actually take the hand of the worker and teach them. Workers of a team also help their team members.

Teamwork is Everything


Team work is essential in manufacturing also like many of the sports. Assigning responsibility to individuals is not sufficient. Teamwork is essential.

The Skill of Passing the Baton
The work area is like track relay. There is a wide area in which baton can be passed.
       Mutual Assistance Campaign

An Idea from the U.S. Supermarket


The communication system of Toyota is Kanban and Ohno got the idea for it from watching the transactions in Supermarkets of USA. At supermarkets buyers buy what they need.  Supermarkets have to facilitate it.

The idea of supermarket was implemented in Toyota and to avoid a situation wherein large quantity of a component is demanded suddenly, production leveling was also introduced.

What is Kanban?


         Kanban is a method for communicating production and use related messages among the plant personnel. Its most frequently used form is a piece of paper contained in a rectangular vinyl envelope. It contains 1. pickup information 2. transfer information and production information.  The kanban method is used for information flow vertically and laterally within Toyota itself and between Toyota and its supply partners.

Kanban is autonomic nerve of the production line.

(The word Kanban literally means visible record).

Incorrect Use of Kanban Causes Problems


Incorrect use of Kanban system causes problems. Close supervision of the kanban rules is required to derive best results from it.

1. An assembly process (more generally later process) can pick up items only in the quantity specified in the kanban from the earlier process. So the quantity the assembly process can pick up at a time is specified in the kanban system.
2. Earlier processes produce items in the quantity specified in the kanban which is provided by the later process after withdrawing the item from stocks of earlier process.
3. No items are withdrawn or transported or produced without a kanban indicating it.
4. All items have to move with an attached kanban.
5. Defective items cannot be sent ahead from any processing station. The assembly line can be stopped if there are no defect-free components or assembly in process. But a defective item cannot move forward.
6. Reducing the batch quantities indicated in the Kanban would make the system more sensitive and makes the system more synchronized.



The Talent and Courage to Rethink What We Call Common Sense


Productivity improvement ideas may come but implementing them requires understanding by top management. The ideas when they defy the present conventional thinking or common sense, requires much more understanding the by the top management and the greater the commitment of top management, the more successful will be the implementation.

Ohno wrote that he came up with many revolutionary ideas and implemented them. They were sometimes regarded as high handed. But Toyota's top management watched the situation quietly and allowed Ohno to implement them.

In 1963 only JIT was extended to outside suppliers. Till that only internal production was handled on JIT basis.

Establishing the Flow is the Basic Condition


Toyota helped its suppliers or cooperating firms to set up flow systems first. Then Kanban system was introduced.

Kanban is the communication tool for implementing or realizing JIT. This tool works well when all the supporting processes are flow processes. So flow process is a basic condition for realizing JIT through Kanban communication system.  The other important conditions are levelled production (eliminating surprise withdrawals of components) and working using standard work methods

Use Your Authority to Encourage Them,


Ohno said his ideas were not understood and hence not used initially by many. But he applied them in his department and when he was given more departments to manage, or was shifted to other departments, he implemented them there also, till Kanban became a company wide practice.

Mountains Should be Low and Valleys Should be Shallow


There must be efforts to level the production during the year. The mountains should be low and valleys should be shallow as much as possible and sales department has to strive for more uniform sales.

Challenge to Production Leveling


TPS works for production leveling during the year, the month and even a day. If 250 sedans, 125 hardtops, and 125 wagons are made daily, in assembly there are done in the sequence One sedan, one hard top, one sedan and then wagon etc. That gives a lot size of one. But lot size of one was not achieved overnight in various shops. In a die-press, in 1940 changing the die took to two or three hours. With such a die changing time, one cannot make small lots. So a decision was taken to make efforts to decrease the die changing times. During 1950s, the die change time went down to one hour. Then it was further reduced to 15 minutes. By late 1960s, the die changing time was drastically reduced to 3 minutes.

The challenge to production leveling and small lots was high set up times. The need for quick die changes was generated or identified and steps were taken to understand the issue and develop a solution.  This problem was not attempted earlier. To do this, initial solutions were developed and the workers were trained. But subsequently, the enthusiasm spread and everybody chipped in with suggestions and method improved beyond the initial description. The system became the product of the effort of large number of people.

Product Leveling and Market Diversification


Ohno emphasized that production leveling (small batch quantity) is much more advantageous than the planned mass production system (larger batch quantity) in responding to the diverse demands especially of the automobile market.

Product leveling or small batches is more advantageous to respond to the market diversification. But still, leveling becomes more difficult as diversification develops. Toyota copes up with this problem well enough and keeps market diversification and production leveling in harmony.  In this endeavor, it is important to avoid the use of dedicated facilities and equipment and also equipment that has very general utility. It is important to put in effort and develop specialized, and yet versatile production processes through use of machines and jigs that can handle minimal quantities (Lot sizes of one). It is difficult but we must utilize all available knowledge to avoid undermining the benefits of mass production.

Kanban Accelerates Improvements

Carrying Carts as Kanban

The Elastic Nature of Kanban


3. Further Development


An Autonomic Nervous System in the Business Organization


Ohno says that human body has autonomic nerves that work as instant reflux to certain external stimuli and motor nerves that work under the command of the brain.

Similar to that in TPS, worker make some decisions without the involvement of production control or engineering departments. Production control and engineering departments are the brain of the organization.

In TPS workers stop the plant when problem occurs, decide the sequence to follow in making parts and also decide when overtime is necessary. They need not involve brain in reacting to some small changes in plans.

Provide Necessary Information When Needed


Computers should not be bought and used indiscriminately. It should not lead to higher costs. Processing customer orders and information on market needs and wants by computers can be very effective. But  kanban communication system is more effective in production communication.

The Toyota Style Information System


Toyota does production planning like other companies.  It has an annual plan, say for instance making 2 million cars in the year.  Next, there is a monthly plan, announced a month ahead. Based on the monthly plan daily production schedule is established and this is based on production leveling. Each production line is informed of the daily production quantity. But the daily sequence schedule (sequence of models and color) is sent to only one place - the final assembly line.

The production order for a specific car is issued to the process 1 of the assembly line. This production order will have all the information needed for its production and the workers in the following assembly  processes can tell which parts to use by at the car this  production order attached to car. Workers in the subprocesses can know what to do as soon as they see the car in assembly at the first stage. If needed they are sent the information directly.  Toyota makes sure the right information reaches the operators at the right time by letting the products being produced carry the information needed to assemble them.

Fine Adjustment


To cope with a constantly fluctuating market, the production line must be able to respond to schedule changes.  One day, the line may make four Car A's and six Car B's. But on another day, the ratio might turn out be the reverse - six car A's and four car B's. Such reversed ratios are followed the production line as per the information carried by the Kanban

Coping with Changes

Fine adjustment also means that mistakes are corrected immediately.

What Is True Economy?


True economy is tied directly to the survival of business. In Toyota production system, economy or efficiency is thought in terms of manpower reduction and cost reduction for making one car. Manpower reduction is a means for cost reduction, which the most critical condition for the growth of the business and its survival. The criterion for all decision making in Toyota is cost reduction.

Many improvement ideas are to be generated and each idea has to be thorougly investigated. The cost of improvement should not be more than the cost reduction. Unless, the judgment is made carefully, cost increasing improvements may be undertaken.

At Toyota, we still use many old machines, by maintaining them properly and daily, improving work methods and making layout changes. A layout must make worker activities easy and should not impede production flow.

Re-Examining the Wrongs of Waste


TPS is a method to thoroughly eliminate waste and enhance productivity. Waste refers to all activities of production that increase cost but not add any value (No increase in price takes place due to them). For example, excess people, inventory, and equipment.

The primary waste of excess people, inventory and equipment give rise to secondary wastes.  Complete understanding of waste is essential to implement TPS successfully.

Generate  Excess Capacity


If excess capacity is there, we can use it for various purposes. At Toyota, through continuous improvement, we create excess capacity first and then use it profitably.

The Significance of Understanding


Ohno emphasize the importance of thoroughly understanding production and improvement of production methods and organization and the process of manpower reduction and cost reduction.

Understanding needs an approach to examine an objective positively and comprehend its nature. Careful inspection of a production area reveals waste and scope for improvement.  Only a very close observation reveals waste and work. There are work movements which are not processing, and there are processing activities which are a waste. Manpower reduction means raising the ratio value added processing activities to 100 percent of the working time.

Utilizing the Full Work System


All sources of waste have to be detected and crushed. Waste of overproduction is eliminated in TPS by strictly adhering to standard inventory. If the standard inventory is specified as 5, on a day when it becomes 3 only 2 are produced. On a day when it becomes 4 only one is produced. We call it a full work system, when all standard inventories are replenished in a day. We do not want any overproduction in a day.

Tact Time

(Do Not Make a False Show)

Tact is the length of time, in minutes and seconds, allowed by the customer demand to make one piece of the product. Tact is obtained by dividing the operable time per day (of the machine) by the required number of pieces per day.  Operable rate in TPS refers to the time machine is available for production in a day. The ideal operable rate is 100 per cent. To achieve this, maintenance has to be regular to prevent breakdowns and setup times are to be reduced. Operating rate refers to the production per day.

At Toyota, improvements increase the production quantity per day from a group of workers. But, if excess production is not required as per demand, the number of workers are reduced from the team and only required production is made. Unnecessarily producing excess is no efficiency.

Required Numbers Are All-Important


For each production line, numbers or quantity required by the market is important. In Toyota, we do not produce extra above the required quantity in any line. The excess manpower is transferred to other lines where needed. The required number is adhered to in a disciplined way.

The Tortoise and the Hare


At Toyota we produce according to the needs of the market at slow or fast rate everyday. It is the way of tortoise. We do not run very fast some days and then take rest on other days like a hare.

Take Good Care of Old Equipment


Ohno says, the expertise of a worker increases overtime. But in case of machine, the depreciation of the machines is the popular idea. If machines are poorly maintained and driven close to death, enormous costs are incurred in replacement.  Ohno says, with adequate maintenance, machines will have a longer life.

Look Straight at the Reality

When estimating future business, Ohno recommends that one must be realistic and be ready for instant declines in business.

0.1 Worker is Still One Worker


The savings that come from automation should result in saving a full worker. Then only automation will give cost reduction. Ohno says at the design stage of the production system itself, fewer workers are to be employed. One should not employ more workers initially and then remove them when not needed.

Ohno, in this point also stresses that, they form teams of workers and do not allow only one worker to work in isolation.

Management by Ninjutsu

Management by Ninjutsu means acquiring management skills by training.

In an Art Form, Action is Required
An engineer is an artist. Art requires action not speaking.

Profit Making Industrial Engineering at Toyota


Advocating Profit-Making Industrial Engineering

Surviving the Slow-Growth Economy

4. Genealogy of the Toyota Production System


This chapter gives many passages from the thoughts and sayings of Toyota Sakichi and Toyoda Kiichiro.

Toyoda Kiichiro once told Toyoda Eiji that the best way to work in an automobile assembly plant would to have all parts for assembly at side of the line just in time for their use. The words "just-in-time" attracted many managers of Toyota and Ohno was also attracted by those words.

Taiichi Ohno had experience of cost reduction at Toyota Spinning and Weaving also. The company was implementing cost reduction measures  to catch up and surpass  Lancashire and Yorkshire companies. Toyoda Sakichi had world class view. Toyoda Kiichiro also had world class view. In the two pillars of TPS, autonomation came from Toyoda Sakichi and JIT came from Toyoda Kiichiro.

Toyoda Sakichi said that he observed a grand mother hand weaving for a full day and developed interest in developing a machine for it. Ohno likes that idea of observing on the shop floor to understand things. He wrote "Stand on the shop floor all day and watch - you will eventually discover what has to be done."

Toyoda Kiichiro visisted America and he must have thought about how surpass America's highly developed automobile production system and utter the idea of JIT.

Toyoda Sakichi talked of inventions made by Japanese efforts, knowledge and intellect.He made 100 inventions with patents.







A Global World Around Us



Two Extraordinary Characters

Learning from the Unyielding Spirit

I believe just-in-time was Toyoda Kiichiro's dying wish  - Ohno

Toyotaism with a Scientific and Rational Nature

Provide Good Equipment Even If the Factory Is Simple

Pursuity of a Japanese-Style Production Technique

Making Products That Have Value

Toyoda Kiichiro recognized that the market always demands reasonably priced products.  He wrote "We know our cars will not sell unless they are cheaper than foreign models. "We might manage to sell 50 to 100 cars per month by appealing to patriotism. But selling 200 or 500 cars per month would be difficult. In the end, prices must be competitive."

Can we actually produce economical cars domestically? Cars with proper materials and proper quality?

A Chess Player's View

In Search of Something Japanese

Witnessing a Dialectic Evolution

Toyoda Kiichiro  " we shall learn production techniques from the American method of mass production. But we will not copy it as is. We shall use our own research and creativity to develop a production method that suits our own country's situation."

I believe this was the origin of Toyoda Kiichiro's idea of just-in-time.

5. The True Intention of the Ford System


The Ford System and the Toyota System


Ohno acknowledges - Henry Ford without dispute created the automobile production system. Toyota system uses the flow system developed by Ford. But the difference is that at Ford they were concerned about warehousing the parts and moving the chassis past the warehouse. Toyota eliminated the warehouse.

Small Lot Sizes and Quick Setup


The American automobile business has continuously shown that planned mass production has the greatest effect on cost reduction. The Toyota system takes the reverse course. The slogan is "small lot sizes and quick setups." Toyota system works on the premise of totally eliminating the overproduction generated by inventory and costs related to workers, land, and facilitates needed for managing inventory.

Toyota system works on the premise of totally eliminating the overproduction generated by inventory and costs related to workers, land, and facilities needed for managing inventory.

Rapid changeovers are an absolute requirement for the Toyota Production System. Teaching workers to reduce lot sizes and setup times took repeated on-the-job training.

The Foresight of Henry Ford


Ford said what we do have to bother about is the waste of human labor.  Material in our factory represented labor. When we are wasting material we are wasting labor of some body. We will use material more carefully if we think of it as labour.  Our studies and investigations up to date have resulted in the saving of 80,000,000 pounds of steel a year and this amounts to about 3 million dollars a year.


Standard are Something to Set Up Yourself



Prevention Is Better than Healing


Toyota's strength does not come from its healing processes - it comes from preventive maintenance.

Is There a Ford after Ford?


Ohno said "I think the TPS can be applied in America where the market for many types in large quantities is there."

Toyota has learned a lot from the Ford system.

Inverse Conception and Business Spirit


Is cotton the best material we can use here?  (in seats) As an answer to this question Ford came up with flax and methods to handle it mechanically. Ohno said, "I was intrigued by Ford's question. Is cotton the best material we can use here?"  As Ford pointed out, people follow tradition. This might be acceptable in private life, but in industry, outdated customs must be eliminated. This process of aking why represents Ford's business spirit.  Ohno said reading Ford shows many such brilliant inverse conceptions.

Getting Away from Quantity and Speed

Is efficiency in production systems wrecking all the finer things in life?

Efficiency is merely doing the work in the best way you know rather than in the worst way. It is the taking of a trunk up a hill on a truck rather than on one's back. It is training of the worker and the giving to him of power so that he may earn more and have more and live more comfortably.

6. Surviving the Low-Growth Period


The System Raised in the High-Growth Period

Raising Productivity during Low Growth

Learning from the Flexibility of Ancient People

Important Terms Used to Describe Toyota Production System


Andon

Autonomation

Baka-Yoke

Baton Passing Zone

Do NOt Mkae Isolated Islands

Five Why's

Just-in-Time

Kanban

Labor Saving to Worker Saving to Reducing Number of Workers

Moving vs. Working

Multi-Process Operation System

Operating Rate and Operable Rate

Production Leveling

Profit-Making Industrial Engineering

Real Cause

Required Numbers Equal Production Quantity

Small Lot Sizes and Quick Setups

Standard Work Procedures

Stopping the Line

Tact Time

Toyota Production System

Visual Control (Management by Sight)

Waste Recognition and Elimination

Work Flow and Work Forced to Flow


Work Improvement vs. Equipment Improvement
Work productivity improvement is productivity improvement using the existing equipment. Only tools, jigs and fixtures are introduced as required in work productivity improvement.
If equipment improvement comes first, manufacturing processes will never be improved.



Shigeo Shingo -  Study of Toyota Production System from Industrial Engineering Point of View." - Summary


Shigeo Shingo, the famous industrial engineer from Japan, taught training programmes in Toyota Motors and also gave consultancy services. Based on Taiichi Ohno's book on Toyota Production System, Shingo gave further details of the system in the a book titiled "Study of Toyota Production System from Industrial Engineering Point of View."

You can read the summary of the books in these two parts.

http://nraoiekc.blogspot.com/2014/02/industrial-engineering-foundation-of.html

http://nraoiekc.blogspot.com/2014/02/industrial-engineering-foundation-of.html








Updated 9 Sep, 5 Sep 2015, 30 Nov 2013



Tuesday, September 1, 2015

Manufacturing Ideology: Scientific Management in Twentieth-Century Japan - William M. Tsutsui - Book Information

Technology and Manufacturing Process Selection - Elsa Henriques et al. - Book Information

Flexibility and Efficiency - Both Can be Improved - Paul S. Adler


Flexibility Versus Efficiency? A Case Study
of Model Changeovers in the Toyota
Production System
Paul S. Adler • Barbara Goldoftas • David I. Levine
School of Business Administration, University of Southern California, Los Angeles, California 90089-1421
Program in Writing and Humanistic Studies, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Haas School of Business, University of California, Berkeley, California 94720


Much organization theory argues that efficiency requires bureaucracy, that bureaucracy impedes flexibility,
and that organizations therefore confront a tradeoff between efficiency and flexibility. Some researchers have challenged this line of reasoning, arguing that organizations can shift the efficiency/flexibility tradeoff to attain both superior efficiency and superior flexibility

The authors analyze an auto assembly plant that appears to be far above average industry performance in both efficiency and flexibility. NUMMI, a Toyota subsidiary located in Fremont, California, relied on a highly bureaucratic organization to achieve its high efficiency. Analysis of  two recent major model changes, the authors  find that NUMMI used four mechanisms to support its exceptional flexibility/efficiency combination.

ORGANIZATION SCIENCE/Vol. 10, No. 1, January–February 1999 pp. 43-68

Friday, August 28, 2015

Analysis of Material - Methods Efficiency Improvement Analysis - Illustrations










Analysis of Material

Material cost is a very important part of the total cost of any product. Therefore the analyst should check the material for the possibility of using lower cost materials.




Questions. The following questions will prove suggestive in connection with an analysis of material:

1. Does the material specified appear suitable for the purpose for which it is to be used?

2. Could a less expensive material be substituted that would function as well?

M30 concrete in place of M35 concrete in India.

3. Could a lighter gage material be used?

Example: Reduction of automobile body sheet thickness by Maruti Suzuki in India.

4. Is the material furnished in suitable condition for use?

5. Could the supplier perform additional work upon the material that would make it better suited for its use?

6. Is the size of the material the most economical?

7. If bar stock or tubing, is the material straight?

8. If a casting or forging, is the excess stock sufficient for machining purposes but not excessive?

9. Can the machinability of the material be improved by heat-treatment or in other ways?

10. Do castings have hard spots or burned-in core sand that should be eliminated?

11. Are castings properly cleaned and have all fins, gate ends, and riser bases been removed?

12. Is material sufficiently clean and free from rust?

13. If coated with a preserving compound, how does this compound affect dies?

14. Is material ordered in amounts and sizes that permit its utilization with a minimum amount of waste, scrap, or short ends?

15. Is material uniform and reasonably free from flaws and defects?

16. Is material utilized to the best advantage during processing?

Change of design and cutting patter in Maruti Suzuki in India.

17. Where yield from a given amount of material depends upon ability of the operator, is any record of yield kept?

18. Is miscellaneous material used for assembly, such as nails, screws, wire, solder, rivets, paste, and washers, suitable?

19. Are the indirect or supply materials such as cutting oil, molding sand, or lubricants best suited to the job?

20. Are materials used in connection with the process, such as gas, fuel oil, coal, coke, compressed air, water, electricity, acids, and paints, suitable, and is their use controlled and economical?

Special materials will evoke special questions, but the list here given will indicate the kind of questions that should be asked and will stimulate suggestions for improvement on many kinds of the more common materials.