Thursday, December 24, 2020

Productivity Science of Human Effort - Development of Science in Mechanic Arts

INDUSTRIAL ENGINEERING is redesign (engineering) of Products, Facilities and Processes for Productivity increase.
Productivity Management Imperative for USA - McKinsey. Returning US productivity to its long-term trend of 2.2 percent annual growth would add $10 trillion in cumulative GDP over the next ten years (2023 - 2030).

INTRODUCTION TO MODERN INDUSTRIAL ENGINEERING. E-Book FREE Download. 



Lesson 4


 Industrial Engineering ONLINE Course - Main Page

Development of Science in Mechanic Arts  =  Productivity science of human effort

From: F.W. Taylor, Scientific Management, All Chapters
F.W. Taylor Scientific Management - With Appropriate Sections
                                                                 Source: Wikipedia 







The Science of Human Motions


The science which exists in most of the mechanic arts is, however, far simpler than the science of cutting metals. In almost all cases, in fact, the laws or rules which are developed are so simple that the average man would hardly dignify them with the name of a science. In most trades, the science is developed through a recording of movements made by mechanics, and the time taken to do those movement using time study and a simple analysis of the recorded data. It is termed time study of the movements required by the workmen to do some small part of his work, and this study is usually made by a man equipped merely with a stop-watch and recording sheet.  Hundreds of these "time-study men" are now engaged in developing elementary scientific knowledge where before existed only rule of thumb. The motion study of Mr. Gilbreth in bricklaying is a much more elaborate investigation and many activities of mechanics do not require that elaborate effort to develop science.  

The general steps to be taken in developing simples law of many  elemental activities of mechanics are  as follows:

First. Find, say, 10 or 15 different men (preferably in as many separate establishments and different parts of the country) who are especially skillful in doing the particular work to be analyzed.

Second. Study the exact series of elementary operations or motions which each of these men uses in doing the work which is being investigated, as well as the implements each man uses.

Third. Study with a stop-watch the time required to make each of these elementary movements and then select the quickest way of doing each element of the work.

Fourth. Eliminate all false movements, slow movements, and useless movements.

Fifth. After doing away with all unnecessary movements, collect into one series the quickest and best movements as well as the best implements.

This one new method, involving that series of motions which can be made quickest and best, is then substituted in place of the ten or fifteen inferior series which were formerly in use. This best method becomes standard, and remains standard, to be taught first to the teachers (or functional foremen) and by them to every workman in the establishment until it is superseded by a quicker and better series of movements. In this simple way one element after another of the science is developed. As we can see, it is simple because we are not going the causal factors. We are only trying to identify the way of working that is giving the minimum time presently.

In the same way each type of implement used in a trade is studied. Under the philosophy of the management of "initiative and incentive" each work-man is called upon to use his own best judgment, so as to do the work in the quickest time, and from this results in all cases a large variety in the shapes and types of implements which are used for any specific purpose. Scientific management requires, first, a careful investigation of each of the many modifications of the same implement, developed under rule of thumb; and second, after a time study has been made of the speed attainable with each of these implements, that the good points of several of them shall be united in a single standard implement, which will enable the workman to work faster and with greater ease than he could before. This one implement, then, is adopted as standard in place of the many different kinds before in use, and it remains standard for all workmen to use until superseded by an implement which has been shown, through motion and time study, to be still better.

With this explanation it will be seen that the development of a simple science of productivity to replace rule of thumb is in most cases by no means a formidable undertaking, and that it can be accomplished by ordinary, every-day men without any elaborate scientific training; but that, on the other hand, the successful use of even the simplest improvement of this kind calls for records, system, and cooperation where in the past existed only individual effort.






Notes by Narayana Rao


1. "With this explanation it will be seen that the development of a science to replace rule of thumb is in most cases by no means a formidable undertaking, and that it can be accomplished by ordinary, every-day men without any elaborate scientific training."

Taylor expressed the opinion that identifying the operator who is doing the job quickest and further improving the method by identifying waste motions and motions not required does not require persons with indepth training in science and engineering. It can be done by persons with lesser education. 

2. "Even the motion study of Mr. Gilbreth in bricklaying (described on pages 77 to 84) involves a much more elaborate investigation than that which occurs in most cases."

Taylor considers motion study advocated by Frank Gilbreth to be a more elaborate investigation than his recommendation.

3. "This one implement, then, is adopted as standard in place of the many different kinds before in use, and it remains standard for all workmen to use until superseded by an implement which has been shown, through motion and time study, to be still better."

Taylor coined the term "motion and time study" in 1911 itself.

4. "The science which exists in most of the mechanic arts is, however, far simpler than the science of cutting metals."

For science of machine, you require engineers with interest in development of science - productivity science of machines as well as science of machine work.



Science of Motives of Men - F.W. Taylor



Accurate Study of the Motives Which Influence Men. 


There is another type of scientific investigation which has been referred to several times in this paper, and which should receive special attention, namely, the accurate study of the motives which influence men. At first it may appear that this is a matter for individual observation and judgment, and is not a proper subject for exact scientific experiments. It is true that the laws which result from experiments of this class, owing to the fact that the very complex organism--the human being--is being experimented with, are subject to a larger number of exceptions than is the case with laws relating to material things. And yet laws of this kind, which apply to a large majority of men, unquestionably exist, and when clearly defined are of great value as a guide in dealing with men. In developing these laws, accurate, carefully planned and executed experiments, extending through a term of years, have been made, similar in a general way to the experiments upon various other elements which have been referred to in this paper. Perhaps the most important law belonging to this class, in its relation to scientific management, is the effect which the task idea has upon the efficiency of the workman. This, in fact, has become such an important element of the mechanism of scientific management, that by a great number of people scientific management has come to be known as "task management."

There is absolutely nothing new in the task idea. Each one of us will remember that in his own case this idea was applied with good results in his school-boy days. No efficient teacher would think of giving a class of students an indefinite lesson to learn. Each day a definite, clear-cut task is set by the teacher before each scholar, stating that he must learn just so much of the subject; and it is only by this means that proper, systematic progress can be made by the students. The average boy would go very slowly if, instead of being given a task, he were told to do as much as he could. All of us are grown-up children, and it is equally true that the average workman will work with the greatest satisfaction, both to himself and to his employer, when he is given each day a definite task which he is to perform in a given time, and which constitutes a proper day's work for a good workman. This
furnishes the workman with a clear-cut standard, by which he can throughout the day measure his own progress, and the accomplishment of which affords him the greatest satisfaction.

The writer has described in other papers a series of experiments made upon workmen, which have resulted in demonstrating the fact that it is impossible, through any long period of time, to get work-men to work much harder than the average men around them, unless they are assured a large and a permanent increase in their pay. This series of experiments, however, also proved that plenty of workmen can be found who are willing to work at their best speed, provided they are given this liberal increase in wages. The workman must, however, be fully assured that this increase beyond the average is to be permanent. Our experiments have shown that the exact percentage of increase required to make a workman work at his highest speed depends upon the kind of work which the man is doing.

It is absolutely necessary, then, when workmen are daily given a task which calls for a high rate of speed on their part, that they should also be insured the necessary high rate of pay whenever they are
successful. This involves not only fixing for each man his daily task, but also paying him a large bonus, or premium, each time that he succeeds in doing his task in the given time. It is difficult to
appreciate in full measure the help which the proper use of these two elements is to the workman in elevating him to the highest standard of efficiency and speed in his trade, and then keeping him there, unless one has seen first the old plan and afterward the new tried upon the same man. And in fact until one has seen similar accurate experiments made upon various grades of workmen engaged in doing widely different types of work. The remarkable and almost uniformly good results from the correct application of the task and the bonus must be seen to be appreciated.

These two elements, the task and the bonus (which, as has been pointed out in previous papers, can be applied in several ways), constitute two of the most important elements of the mechanism of scientific management. They are especially important from the fact that they are, as it were, a climax, demanding before they can be used almost all of the other elements of the mechanism; such as a planning department, accurate time study, standardization of methods and implements, a routing system, the training of functional foremen or teachers, and in many cases instruction cards slide-rules, etc. (Referred to  in  more detail on page 129?.)

The necessity for systematically teaching workmen how to work to the best advantage has been several times referred to. It seems desirable, therefore, to explain in rather more detail how this teaching is done. In the case of a machine-shop which is managed under the modern system, detailed written instructions as to the best way of doing each piece of work are prepared in advance, by men in the planning department. These instructions represent the combined work of several men in the planning room, each of whom has his own specialty, or function. One of them, for instance, is a specialist on the proper speeds and cutting tools to be used. He uses the slide-rules which have been above described as an aid, to guide him in obtaining proper speeds, etc. Another man analyzes the best and quickest motions to be made by the workman in setting the work up in the machine and removing it, etc. Still a third, through the time-study records which have been accumulated, makes out a timetable giving the proper speed for doing each element of the work. The directions of all of these men, however, are written on a single instruction card, or sheet.

These men of necessity spend most of their time in the planning department, because they must be close to the records and data which they continually use in their work, and because this work requires the use of a desk and freedom from interruption. Human nature is such, however, that many of the workmen, if left to themselves, would pay but little attention to their written instructions. It is necessary, therefore, to provide teachers (called functional foremen) to see that the workmen both understand and carry out these written instructions.

Under functional management, the old-fashioned single foreman is superseded by eight different men, each one of whom has his own special duties, and these men, acting as the agents for the planning department (see paragraph 234 to 245 of the paper entitled "Shop Management"), are the expert teachers, who are at all times in the shop, helping, and directing the workmen. Being each one chosen for his knowledge and personal skill in his specialty, they are able not only to tell the
workman what he should do, but in case of necessity they do the work themselves in the presence of the workman, so as to show him not only the best but also the quickest methods.

One of these teachers (called the inspector) sees to it that he understands the drawings and instructions for doing the work. He teaches him how to do work of the right quality; how to make it fine and exact where it should be fine, and rough and quick where accuracy is not required,--the one being just as important for success as the other. The second teacher (the gang boss) shows him how to set up the job in his machine, and teaches him to make all of his personal motions in the quickest and best way. The third (the speed boss) sees that the machine is run at the best speed and that the proper tool is used in the particular way which will enable the machine to finish its product in the shortest possible time. In addition to the assistance given by these teachers, the workman receives orders and help from four other men; from the "repair boss" as to the adjustment, cleanliness, and general care of his machine, belting, etc.; from the "time clerk," as to everything relating to his pay and to proper written reports and returns; from the "route clerk," as to the order in which he does his work and as to the movement of the work from one part of the shop to another; and, in case a workman gets into any trouble with any of his various bosses, the "disciplinarian" interviews him.

It must be understood, of course, that all workmen engaged on the same kind of work do not require the same amount of individual teaching and attention from the functional foremen. The men who are new at a given operation naturally require far more teaching and watching than those who have been a long time at the same kind of jobs.

Now, when through all of this teaching and this minute instruction the work is apparently made so smooth and easy for the workman, the first impression is that this all tends to make him a mere automaton, a wooden man. As the workmen frequently say when they first come under this system, "Why, I am not allowed to think or move without some one interfering or doing it for me!" The same criticism and objection, however, can be raised against all other modern subdivision of labor. It does not follow, for example, that the modern surgeon is any more narrow or wooden a man than the early settler of this country. The frontiersman, however, had to be not only a surgeon, but also an
architect, house-builder, lumberman, farmer, soldier, and doctor, and he had to settle his law cases with a gun. You would hardly say that the life of the modern surgeon is any more narrowing, or that he is more of a wooden man than the frontiersman. The many problems to be met and solved by the surgeon are just as intricate and difficult and as developing and broadening in their way as were those of the frontiersman.

And it should be remembered that the training of the surgeon has been almost identical in type with the teaching and training which is given to the workman under scientific management. The surgeon, all through his early years, is under the closest supervision of more experienced men, who show him in the minutest way how each element of his work is best done. They provide him with the finest implements, each one of which has been the subject of special study and development, and then insist upon his using each of these implements in the very best way. All of this teaching, however, in no way narrows him. On the contrary he is quickly given the very best knowledge of his predecessors; and, provided (as he is, right from the start) with standard implements and methods which represent the best knowledge of the world up to date, he is able to use his own originality and ingenuity to make real additions to the world's knowledge, instead of reinventing things which are old. In a similar way the workman who is cooperating with his many teachers under scientific management has an opportunity to develop which is at least as good as and generally better than that which he had when the whole problem was "up to him" and he did his work entirely unaided.

If it were true that the workman would develop into a larger and finer man without all of this teaching, and without the help of the laws which have been formulated for doing his particular job, then it would follow that the young man who now comes to college to have the help of a teacher in mathematics, physics, chemistry, Latin, Greek, etc., would do better to study these things unaided and by himself. The only difference in the two cases is that students come to their teachers, while from the nature of the work done by the mechanic under scientific management, the teachers must go to him. What really happens is that, with the aid of the science which is invariably developed, and through the instructions from his teachers, each workman of a given intellectual capacity is enabled to do a much higher, more interesting, and finally more developing and more profitable kind of work than he was before able to do. The laborer who before was unable to do anything beyond, perhaps, shoveling and wheeling dirt from place to place, or carrying the work from one part of the shop to another, is in many cases taught to do the more elementary machinist's work, accompanied by the agreeable surroundings and the interesting variety and higher wages which go with the machinist's trade. The cheap machinist or helper, who before was able to run perhaps merely a drill press, is taught to do the more intricate and higher priced lathe and planer work, while the highly skilled and more intelligent machinists become functional foremen and teachers. And so on, right up the line.

Encourage Workmen to Suggest Improvements in Methods and Implements


It may seem that with scientific management there is not the same incentive for the workman to use his ingenuity in devising new and better methods of doing the work, as well as in improving his implements, that there is with the old type of management. It is true that with scientific management the workman is not allowed to use whatever implements and methods he sees fit in the daily practice of his work. Every encouragement, however, should be given him to suggest improvements, both in methods and in implements. And whenever a workman proposes an improvement, it should be the policy of the management to make a careful analysis of the new method, and if necessary conduct a series of experiments to determine accurately the relative merit of the new suggestion and of the old standard. And whenever the new method is found to be markedly superior to the old, it should be adopted as the standard for the whole establishment. The workman should be given the full credit for the improvement, and should be paid a cash premium as a reward for his ingenuity. In this way the true initiative of the workmen is better attained under scientific management than under the old
individual plan.

F.W. Taylor, Scientific Management

All Chapters
F.W. Taylor Scientific Management - With Appropriate Sections

Next Chapter
Scientific Management in Its Essence - F.W. Taylor

Updated 9 July 2016,  4 August 2013



No comments:

Post a Comment