Wednesday, May 11, 2022

Importance of Task Organization - F.W. Taylor - Machine Effort Industrial Engineering



There is no question that when the work to be done is at all complicated, a good organization with a poor plant will give better results than the best plant with a poor organization. One of the most successful manufacturers in this country was asked recently by a number of financiers whether he thought that the difference between one style of organization and another amounted to much providing the company had an up-to-date plant properly located. His answer was, "If I had to choose now between abandoning my present organization and burning down all of my plants which have cost me millions, I should choose the latter. My plants could be rebuilt in a short while with borrowed money, but I could hardly replace my organization in a generation."

Modern engineering can almost be called an exact science; each year removes it further from guess work and from rule-of-thumb methods and establishes it more firmly upon the foundation of fixed principles.

The writer feels that management is also destined to become more of an art, and that many of the, elements which are now believed to be outside the field of exact knowledge will soon be standardized tabulated, accepted, and used, as are now many of the elements of engineering. Management will be studied as an art and will rest upon well recognized, clearly defined, and fixed principles instead of depending upon more or less hazy ideas received from a limited observation of the few organizations with which the individual may have come in contact. There will, of course, be various successful types, and the application of the underlying principles must be modified to suit each particular case. The writer has already indicated that he thinks the first object in management is to unite high wages with a low labor cost. He believes that this object can be most easily attained by the application of the
following principles:

(a) A LARGE DAILY TASK. --Each man in the establishment, high or low, should daily have a clearly defined task laid out before him. This task should not in the least degree be vague nor indefinite, but should be circumscribed carefully and completely, and should not be easy to accomplish.

(b) STANDARD CONDITIONS. --Each man's task should call for a full day's work, and at the same time the workman should be given such standardized conditions and appliances as will enable him to accomplish his task with certainty.

(c) HIGH PAY FOR SUCCESS. --He should be sure of large pay when he accomplishes his task.

(d) LOSS IN CASE OF FAILURE. --When he fails he should be sure that sooner or later he will be the loser by it.

When an establishment has reached an advanced state of organization, in many cases a fifth element should be added, namely: the task should be made so difficult that it can only be accomplished by a first-class man.

There is nothing new nor startling about any of these principles and yet it will be difficult to find a shop in which they are not daily violated over and over again. They call, however, for a greater departure from the ordinary types of organization than would at first appear.

Machine Effort Industrial Engineering


In the case, for instance, of a machine shop doing miscellaneous work, in order to assign daily to each man a carefully measured task, a special planning department is required to lay out all of the work at least one day ahead. All orders must be given to the men in detail in writing; and in order to lay out the next day's work and plan the entire progress of work through the shop, daily returns must be made by the men to the planning department in writing, showing just what has been done. Before each casting or forging arrives in the shop the exact route which it is to take from machine to machine should be laid out. An instruction card for each operation must be written out stating in detail just how each operation on every piece of work is to be done and the time required to do it, the drawing number, any special tools, jigs, or appliances required, etc. Before the four principles above referred to can be successfully applied it is also necessary in most shops to make important physical changes. All of the small details in the shop, which are usually regarded as of little importance and are left to be regulated according to the individual taste of the workman, or, at best, of the foreman, must be thoroughly and carefully standardized; such. details, for instance, as the care and tightening of the belts; the exact shape and quality of each cutting tool; the establishment of a complete tool room from which properly ground tools, as well as jigs, templates, drawings, etc., are issued under a good check system, etc.; and as a matter of importance (in fact, as the foundation of scientific management) an accurate study of unit times must be made by one or more men connected with the planning department, and each machine tool must be standardized and a table or slide rule constructed for it showing how to run it to the best advantage.

At first view the running of a planning department, together with the other innovations, would appear to involve a large amount of additional work and expense, and the most natural question would be is whether the increased efficiency of the shop more than offsets this outlay? It must be borne in mind, however, that, with the exception of the study of unit times, there is hardly a single item of work done in the planning department which is not already being done in the shop. Establishing a planning department merely concentrates the planning and much other brainwork in a few men especially fitted for their task and trained in their especial lines, instead of having it done, as heretofore, in most cases by high priced mechanics, well fitted to work at their trades, but poorly trained for work more or less clerical in its nature.


F.W. Taylor, Shop Management

Next Topic












No comments:

Post a Comment