Wednesday, December 14, 2016

Robot Motion Economy Principles

Principles of motion economy for human effort industrial engineering. Principles of machine economy for machine effort industrial engineering.

1. Minimize the number of grippers needs and consider adding a simple feature for easier more secure gripping

2. Simpler Robots - Minimize the complexity of robots.  Reduce number of arms and joints.

https://books.google.co.in/books?id=2DvSBwAAQBAJ&pg=PA91#v=onepage&q&f=false

Friday, December 2, 2016

Methods improvement - The Current Role of the Foreman - Supervisor



Methods improvement and the foreman, by J. W. Roberts and Clem Zinck.

Main Author: Roberts, John William, 1901-
Published: New London, Conn., National Foremen's Institute [1951]
Subjects: Supervisors, Industrial.
Physical Description: 174 p. illus. 21 cm.

Good and detailed content on work simplification is there in this book

https://catalog.hathitrust.org/Record/005735775

The Training Within Industry Report, 1940-1945: A Record of the Development of Management Techniques for Improvement of Supervision, Their Use and the Results
War Manpower Commission, Bureau of Training, Training within Industry Service, 1945 - Employees - 330 pages
https://books.google.co.in/books?id=E_s-DCnFvLYC


Training Within Industry Individual Manuals

Scans of the original manuals. Each manual has color covers, front and back. All manuals setup for duplex printing. Single sided printouts will have some blank pages. See Printing Notes for details.

Bulletin Series --- Original Text, 5.9MB
JI: Job Instruction Manual --- Original Text, 2.6MB
JM: Job Methods Manual --- Original Text, 4.0MB
JR: Job Relations Manual --- Original Text, 3.7MB
UJR: Union Job Relations Manual --- Original Text, 4.1MB
PD: Program Development Manual --- Original Text, 4.0MB
JS: Job Safety Manual --- Original Text (from Canadian Department of Labor, Found at National Archives), 2.1MB
Individual Manual Printing Notes
http://chapters.sme.org/204/TWI_Materials/TWI_Manuals/TWIManuals.htm

Thursday, November 24, 2016

Total Cost Industrial Engineering - An Illustration



Total cost industrial engineering is determining  cost reduction target at the total cost level of the organization and achieving the target by using industrial engineering methods and techniques in various departments of the organization. Total productivity management is the name under which it is promoted.

The illustration is based on  Top-down Production Management: A Recent Trend in the Japanese Productivity-enhancement Movement by W. Mark Fruin and Masao Nakamura, published in
MANAGERIAL AND DECISION ECONOMICS, VOL. 18, 131–139 (1997)

TOTAL PRODUCTIVITY MANAGEMENT (TPM): A TOP-DOWN APPROACH TO MANAGING PRODUCTIVITY

STEPS

Step 1. Corporate goal setting for cost reduction.  Set  company-wide numerical goals and targets.

Step 2. Top-down explosion process. Explode the corporate-level goals and targets systematically into actions by specific departments (or by specific product lines) and select numerical goals and targets for individual departments (or specific product lines). Repeat Step 2 until goals and targets are selected or assigned to all layers of relevant organizational units and individuals with the responsibility for cost reduction (industrial engineers in engineering departments).

Step 3. Implementation and assessment.  Compare the corporate performance and departmental performances  with the originally set goals. Take control actions in the current year. Incorporate changes in the planning system for the next year.



The strategic planning decided that it is necessary to achieve a 15% reduction in the unit estimated production cost taking into consideration the improvements in the product planned in order to give a 10% reduction in the existing price. This means that the current production cost (200000 yen) must be reduced by  35000 yen. The composition of the unit production cost is: labor 30% (60000 yen), raw materi als 60% (120000)  and overhead 10% (20000).

After initial analysis by cost reduction - industrial engineering top level team,  it was decided that the cost-reduction target, 35000 yen, will be allocated between labor and raw materials as labor 14000 yen, and raw materials 21000 yen.

Labor Cost Reduction - Further Assignment


The labor cost reduction target is to be assigned to five workshops:  molding, machine, welding, assembly and inspection workshops.  Discussions of the top level CR-IE team with the shop level CR-IE team lead to the following cost reduction targets at the shop level: molding 840 yen,  machinery 4194 yen, molding 840 yen, welding 2285 yen, assembly 6000 yen, and inspection workshop 660 yen.

Assembly level cost reduction target further break up. 


 The assembly workshop has eight assembly lines A-H.   Lines B, C and E employ large labor hours, consist of similar job tasks and an improvement in one can be implemented on the lines.
(f) The numerical target for cost reduction for the assembly workshop is 6000 yen. The cost target was converted into 1676 hours reduction target. Lines B, C and E are operational 95% of the time and hence our labor input reduction effort has to be from reduction of assembly time. The opportunity to get savings from downtime is limited.

Assembly Line Level Effort

22 jobs are done on these assembly line with six stations. Each station is given 0.15 minute. The  total utilized labor time for all the stations is only 0.53 minutes.  Hence effort was made to reduce the station time or cycle time to 0.09 minutes. The output from the lines have gone up by 40% due to this productivity improvement initiative and the assembly workshop met its cost reduction target.


The simplified description shows how a corporate level cost reduction target is converted into shop level and assembly line level or work centre level cost reduction targets. The top level CR-IE team, department level CR-IE team and shop level CR-IE team interact with fix shop level cost reduction targets. The industrial engineer, in engineering departments joins with engineering managers, supervisors and operators of the shop to engage in productivity improvement project. They get the needed help from higher level CR-IE team members to complete the project.
ˆ
The implementation of a top-down TPM program requires substantial inputs of a bottom-up persons of the shop. Without cooperation from the shopfloor no meaningful numerical targets could be derived and hence an effective implementation of any target would not be possible.
The main characteristics of TPM is that it deals with corporatewide goals. Another is that it deals with specific numerical targets for cost reduction.


Bottom-up approaches to productivity improvement are important for continuous improvement but may only provide sub-optimal solutions from the firm’s perspective when a corporate-wide optimal solution is required. TPM has been found to be effective for overall optimization and hence for improving firms’ overall profitability in a planned way over the typical sales and profit planning periods.


Related Article

Productivity Management

http://nraoiekc.blogspot.com/2016/11/productivity-management.html

Friday, November 18, 2016

Hundred Years of Industrial Engineering and Improvement of Productivity - Link to Article





http://www.timesascent.com/event/Hundred-Years-of-Industrial-Engineering-and-Improvement-of-Productivity/47

The principles of scientific management and the advocacy for staff specialists to help managers implement scientific management gave birth to the discipline of ‘Industrial Engineering'. Charles Buxton Going authored the first textbook on industrial engineering.


Principles of Scientific Management:

The operators have to be selected scientifically and then trained in standard methods. 

There has to be cooperation between men and managers so as to insure all of the work being done is in accordance with the principles of the science which has been developed. 

There has to be an almost equal division of the work and the responsibility between the management and the workmen. 

The management takes over all work for which they are better fitted than the workmen, while in the past almost all of the work and the greater part of the responsibility of operations were thrown upon the men.

Article by Narayana Rao K.V.S.S. (Author of this blog)


Principles of Industrial Engineering

To be added.

Updated  20 November 2016, 3 Feb 2012

Thursday, November 17, 2016

Total Productivity Management - A Different Perspective - Suito Kiyoshi

The purpose of "Total Productivity Management" is to improve the competitiveness of products and services in price/cost and customer responsiveness, thereby increasing the profitability, market share, and return on investment in human, material, capital, and technology resources.


Methodology
1. Mission Statement Development

2. Productivity Analysis

• Total Productivity and Break-Even   Point of Total Productivity
• Human Productivity
• Materials Productivity
• Fixed Capital Productivity
• Working Capital Productivity
• Energy Productivity
• Other Expense Productivity
An analysis will be made of the impact of these productivities on profits.

3. Management Goals Development

4. Productivity Goal Development

5. Fishbone Analysis and Action Plans Development
Using the Fishbone Analysis, action plans will be developed for each of the management goals.

5. PQT Training
This training entails an 8-step approach for problem-solving to improve productivity, quality, and customer responsiveness. It also teaches skills in supervision, planning, organizing, motivating, delegating, controlling, and communicating.

6. Assessment of Productivity Goal Achievement
To assess the progress toward the achievement of the productivity goals. Personnel from accounting and management information systems will be taught how to use it.

7. TPG
To provide consistent motivation to achieve the corporate mission, the "Total Productivity Gainsharing" formula will be applied. The management will be guided to consider different options.

Suito, Kiyoshi. (1998). Total productivity management.  Work Study, 47(4), 117-127.

http://www.mgtii.com/Engineering_Management_Miami_FL.html

Paper containing full example of the above model
Resource Use, Waste, and Total Productivity Management in Saudi Arabia Hotel Industry
Rami H. Alamoudi
Department of Industrial Engineering
King Abdulaziz University, Jeddah, Saudi Arabia
International Journal of Basic & Applied Sciences IJBAS Vol: 9 No: 10, Pp. 43-54



Determinants of Productivity - Syverson - 2011

Paper: What Determines Productivity?
Chad Syverson
Journal of Economic Literature 2011, 49:2, 326–365
Can be accessed from Syverson's personal website

Economists have shown that large and persistent differences in productivity levels across businesses are ubiquitous. This finding has shaped research agendas in a number of fields, including (but not limited to) macroeconomics, industrial organization, labor, and trade. This paper surveys and evaluates recent empirical work addressing the question of why businesses differ in their measured productivity levels. The causes are manifold, and differ depending on the particular setting. They include elements sourced in production ractices—and therefore over which producers have some direct control, at least in theory—as well as from producers’ external operating environments. After evaluating the current state of knowledge, the papers  lays out the major questions that research in the area should address going forward.

Research questions for further research

1 What Is the Importance of Demand?
2 What Is the Role of (or Hope for) Government Policies That Encourage Productivity Growth?
3 Which Productivity Drivers Matter Most?
4 What Factors Determine Whether Selection or Within-Producer Growth Is More Important in a Market/Sector/
Industry?
5 What Is the Role of Misallocation as a Source of Variation in Emerging Economies?
6 What Is the Importance of Higher Variance in Productivity Outcomes?
7 Can We Predict Innovation Based on Market Conditions?
8 The Nature of Intangible Capital
9 Management Versus Managers
10 A Plea for Data

This research is further  continued by other scholars

http://www.mckinsey.com/global-themes/china/why-management-matters-for-productivity

http://www.nber.org/reporter/2008number4/bloom.html

Updated  20 November 2016,  6 August 2013

Productivity Management - An Activity of Industrial Engineers - List of Articles



Productivity Management is an important component of industrial engineering

Industrial engineering department has the responsibility to manage productivity in the organization. It may undertake this responsibility as a staff department like accounting department. IE department measures productivity, identifies the reasons for low productivity and high costs, determines the processes and operations, products to be studied using IE methods to improve productivity of them and submits the recommendations to line managers. On the approval of line managers, IE participates in installation projects and training projects and then measures the new productivity. A well functioning IE department is responsible for continuous improvement in productivity. Competitors come into the market with more productivity methods and products and every existing company has to pay attention to productivity to remain in the market and protect its market share in the presence of new competitors. IEs help companies to maintain their competitive position.

IEs have to plan productivity improvement, organize for productivity improvement, acquire resources for undertaking productivity improvement projects, execute productivity improvement projects and control productivity improvement. They have to use all functions of management (process of management) to manage the productivity of a concern as staff assistants to managers at various levels.


Review of Total Productivity Management

Management and Industrial Engineering

Driving Change One Project at a Time

Total Industrial Engineering and Work Simplification

Role of Top Management in Implementing Scientific Management - F.W. Taylor

Productivity Measurement

Accounting Analysis of Productivity Projects and Programmes - Bibliography

Total Cost Industrial Engineering - Industrial Engineering of Enterprise Cost

Productivity Management - Books

Productivity Planning

Productivity Accounting - 2015 - Emili Grifell-Tatjé, C. A. Knox Lovell - Book Information

Cross-Functional Productivity Improvement - Ronald Blank - 2012 - Book Information

Strategic Total Productivity Optimization

Total Productivity Management - A Different Perspective

Determinants of Productivity - Syverson - 2011

Train Operators in High Productivity One by One and Then in Small Batches - F.W. Taylor

Learning Curve - Experience Curve - Bibliography

Total Cost Industrial Engineering - Bibliography

Total Cost Management and Total Cost Industrial Engineering


Suggestions Schemes that work - AME article

Work Simplification by Alan Mogensen


Updated  20 Nov 2016, 12 August 2016, 23 July 2016

Leadership and Productivity



2-14
How Leaders Can Improve Productivity and Profits Simultaneously
http://quickbase.intuit.com/blog/how-leaders-can-improve-productivity-and-profits-simultaneously


Leadership's Impact on Productivity and Engagement
November 2013 -  Gordon Tredgold
https://www.td.org/Publications/Blogs/Management-Blog/2013/11/Leaderships-Impact-on-Productivity-and-Engagement



April 2010

Leadership and its Impact on Productivity
Singapore Productivity Association

Prime Minister Lee Hsien Loong, in his keynote address at SNEF 30th Anniversary CEO and Employers Summit in July 2010, highlighted that “a huge part of the responsibility for improving productivity falls on employers and business leaders”. He emphasised the point advocated by F.W. Taylor that leadership has to take interest, study existing processes and develop new processes to upgrade productivity for businesses.

While management is “getting things done through others”, leadership involves “getting others to want to do things”.

Leadership at Various Levels in Organisations

Self

The first step is leading one’s self. Leaders who can lead themselves meaning who can convince themselves about the utility of a particular action for himself and the organisation,  and possess  the core leadership skills  to lead others would enjoy a high degree of success in leading others in the long run. This calls for an understanding and awareness of strengths and weaknesses, clarity of personal vision, and ability to be creative and curious, understanding others that come in contact with him or have a stake in his activities and a sense of one’s personal brand of leadership.

Self-Team

Middle managers play a critical role in communicating and explaining the organizations programmes to members their teams. It is critical for middle managers to know how to influence others through communication, relationship building and management of tasks entrusted to them.

Team

In the case of senior leaders, who are leading fulld departments,  the  perspective must be
to engage and generate passion in others. Creating a vision for success and aligning all members of the team to that vision is required. It requires an understanding of team leadership and organization dynamics. The senior leaders have to create an environment which maximises the abilities of all team members. Leading for success in the team environment requires a great deal of grace, patience, focus and finesse.


Business Unit
Leaders who operate at this level are responsible and therefore measured by tangible results, which they must produce at the business unit level. It demands leaders who could align efforts of various function with the unit-level business objectives. Leaders at this level must be able to measure performance, improve business processes, create an environment which fosters accountability. They also have to empower functional heads, so that they are proactive, focussed and successful.

Organisation

Leaders operating at the organisation perspective are usually concerned with the strategic direction, enhancing value to the customer, increasing competitive advantage and developing competencies and capabilities for future,   They require the skills and capacity to position themselves and their teams to maximise value today and in the future. These leaders have to monitor the changing marketplace and are react in time to ensure  the long-term viability and effectiveness of the organisation and, business units.


Leaders Drive Productivity:  Are you building a High Performance Environment?
Successfactors article
https://www.successfactors.com/static/docs/SFResearch_LeadershipDriveProductivity.pdf


Updated 20 Nov 2016,  13 August 2016



Sunday, October 23, 2016

Evolution of Zero Wastes Movement in Factory Production - Philosophies, Methods, Techniques, and Tools



Adam Smith described division of labor that provides Zero Waste of Skills (Certain skills are specialised by certain persons)

Charles Babbage advocated division of labor within a manufacturing process of product by by insisting that the process has to be broken into more skilled and less skilled jobs. Different persons are employed in the process to take care of more skilled and less skilled jobs. The benefit less payroll expenses and more utilization of high skilled persons.   - Zero waste of high skilled persons.

F.W. Taylor -  Efficiency improvement of factory operations - Zero waste of ability of machine - Zero waste of work capacity of operators in manual and machine supporting work.

Frank Gilbreth - Motion Study - Zero waste of motions of operators.

Maynard - MTM and MOST time measurement systems - Zero waste of manpower due to rating differences and lack of planning the motions from a design perspective.

Taiichi Ohno - Zero Inventory, Zero Overproduction, Zero Idle Time of Men (multiple machine allottment)

Shiego Shingo - Zero Changeover time and Zero Defects through Poka Yoke

Quality gurus - Zero Defects

House of Quality - Zero Customer Dissatisfaction

Six Sigma  - Zero Defects

Total Productive Management - Zero Breakdowns

Zero Accidents


The application of 7 Zeroes in improvement of Lean and Agility manufacture
INTERDISCIPLINARY JOURNAL OF CONTEMPORARY RESEARCH IN BUSINESS
DECEMBER 2013, VOL 5, NO 8
http://journal-archieves36.webs.com/263-276dec.pdf

Design To Value - Job Notifications




2016

Engineer - Design To Value

Georgia-Pacific LLC
Neenah, US-WI

Job description
Headquartered in Atlanta, Georgia-Pacific is one of the world's leading manufacturers and marketers of building products, tissue, packaging, paper, cellulose and related chemicals. The company employs more than 40,000 people at approximately 300 locations in North America, South America and Europe.

Engineer - Design to Value


This engineering role will have the opportunity to develop and lead initiatives for Georgia Pacific’s motion activated enMotion® dispensers as well as other innovative products. This position will be located in the iNNOVATION institute ® located in Neenah, Wisconsin. The iNNOVATION institute is the center for research and development for many market leading brands including Dixie®, Angel Soft®, Quilted Northern® and Brawny®. Neenah is conveniently located between Oshkosh and Appleton in the Fox Valley.


Responsibilities:
• Identify, solutions, and lead the implementation of opportunities for customer value creation and total cost reduction.
• Develop and implement injection molded plastic strategies.
• Manage external and internal design, development, and testing resources.
• Lead a cross functional team to define scope of work including safety, quality, performance, and cost requirements and validates that they are met.
• Create and manage a detailed project schedule including engineering development, tooling, and product launch activities.

Basic Qualifications:
• Bachelor or higher degree in engineering
• Minimum 5 years of experience developing and/or producing consumer products. (E.g. small appliances, medical devices, etc.)
• Available to travel up to 10%, including occasional international travel

Preferred Qualifications:
• Master of Business Administration, MBA
• Project management certification, PMI PMP
• Working knowledge of commercialization processes (concept generation through manufacturing)
• Understands financial modeling and value analysis

Knowledge - Skills - Abilities:
• Ability to work on cross-functional teams located in different locations
• Build relationships with key internal and external partners on technical development objectives
• Lead in a cross-functional team environment to develop and document project scope.
• Play a lead role in process disruption troubleshooting, with a particular eye toward systematic improvements
• Experience with Solid Works CAD development software
• Experience with plastic injection molding, thermoforming and metal component development and manufacturing processes
• Experience with electro-mechanical device assembly processes
• Experience with product lifecycle cost analysis including material, manufacturing costs, assembly costs, logistics costs, packaging costs, etc.
• Foster a culture of innovation that motivates and inspires the organization to achieve technology and commercial results. Reduce time to market of product revisions
• Experience with FMEA, finite element analysis, kinematics, and other electronic risk assessment or design validation tools
• Strong focus on product quality and customer satisfaction
• Assist in the root cause analysis of Quality Complaints
• Excellent oral and written communication skills with the proven ability to interact with all levels of management

We are an equal opportunity employer. Minority/Female/Disabled/Veteran.
https://www.linkedin.com/jobs/view/18315435


Thursday, September 29, 2016

Productivity Education - A Proposal for a Framework



International Conference On Applied Economics – ICOAE 2010 523

THE LINK BETWEEN EDUCATION AND PRODUCTIVITY: THE EMPLOYERS’ PERSPECTIVE
MARIA ELIOPHOTOU MENON
Abstract
The paper investigates the views of employers in Cyprus regarding the effect of education on productivity in their organisation.
Information was collected through in-depth interviews with 26 individuals who represented different types of employers (public sector institutions, semi-government institutions, small and large private organisations, and key stakeholders). The majority of respondents did not perceive a strong link between education and productivity, nor did they consider the type of education received to have an impact on productivity, expressing views that are consistent with the screening model. Participants identified the problems which limit the positive effect of education on productivity at their organisations, and offered suggestions on overcoming these problems.

Does education raise productivity, or just reflect it?
*
Arnaud Chevalier (University College Dublin & CEE), Colm Harmon (University College Dublin & CEPR) and Ian Walker (University of Warwick, IFS & CEE)
Version 1.01 14 November 2002

Abstract
This paper attempts to implement, using a variety of UK datasets, a number of suggestions from the existing literature for empirically discriminating between the human capital and signalling/screening explanations of the observed correlation between education and wages. Most of these tests are based on the idea that screening is more important in some sectors than others. Although we have
reservations about the power of the tests used we find little support for signalling/screening ideas in these tests. Finally, we exploit a little used distinction between the two theories, based on the response of individuals to a change in the education incentives for some people of the education distribution, to provide a more definitive test and find that the data in the UK appears to strongly support the human capital explanation.
http://cep.lse.ac.uk/events/conferences/cee/walker.pdf


My idea is to present a model having three components

Productivity knowledge

Productivity attitude (Favorable attitude towards productivity improvement process and productivity improvement)

Productivity behavior (actions that implement productivity improving practices, that develop productivity improvement processes, actions that analyse productivity of resources using current methods of analysis, actions that develop new methods of analysis, actions that conduct training in productivity management, actions that celebrate productivity improvements, etc)


Productivity education has to be productivity learning. The learning has to result in change of behavior. It has to result in new behavior that enhances productivity. But negative attitudes toward productivity will become barriers. Hence productivity education needs to focus on attitude development. So productivity knowledge must have a component that provides inputs that help in formation of favorable attitudes about  productivity improvement. I need to develop my thoughts further and publish it as a paper in an industrial engineering journal. I am posting it here to get some opinions and comments.

Updated 2 October 2016, 26 Feb 2015


Sunday, September 11, 2016

Human Behavior Analysis Associated with Industrial Engineering Projects


Industrial engineering projects has implications for operators and also the systems they improve are man machine systems. Hence, unless the cooperation of operators is obtained, the system improvement will not take place. It means, industrial engineers have to analyse the expected behavior from operators, their supervisors and engineers toward the new proposed systems and take adequate steps to get favorable reaction.

The following questions are to be asked by them or analysed by them. They have to take the help of Organization Behavior specialists, Human Resource Managers and Industrial Relations experts in this regard.

1. Who are the people affected by the proposed new system? What type of employees are they?

2. What has been their feeling toward changes in the past? How will the traditions of their group be
affected by the proposal?

3. Who are the leaders of the group involved? What will be their reaction? How can they be sold on the proposal?

4. What is the immediate supervisor's probable reaction? Are his ideas incorporated in the proposal?
How can he be brought into the plan so that he feels favorably toward it? Can he be given the
major credit for the plan?

5. What is the attitude of the union toward such a proposal? How is the union contract involved?

6. Will the proposal require that men be laid off or demoted? Can satisfactory transfers be arranged?

7. Will wage rates and incentive rates be fairly adjusted as part of the change? Will men be asked
to take more responsibility or do more work without extra compensation? Will men be asked to work
against their own interests?

8. How will the proposal affect persons in other departments in the plant? What will be their reaction?

9. Will the proposal take all the responsibility and skill away from certain jobs? If so, will present employees lose prestige with their fellow workers? Will it be possible to keep present employees satisfied under the new conditions?

10. Have the workers involved had ample opportunity to express their views regarding improvements
included in the proposal? Have their ideas been given honest consideration and credit?

11. Do employees trust the data of the industrial engineers? Are they convinced performance standards are fairly set?

12. How are lines of promotion affected by the proposal? Will some workers be cut out of advancement they have worked toward under the present setup?

13. What kind of appeal  would be most successful in getting acceptance from the workers? Who
should introduce and sell the plan to them?

14. What is the proper timing for introducing the proposed plan? Are the workers or supervisors temporarily upset about something? When should the plan be installed?

15. What are the long-time human relations effects of the proposal?

Reference
Industrial Engineering and Human
By M. T. DAVIS
Engineering and Science Monthly
February 1944
pp. 14 - 15

Operator Productivity Improvement Using Appropriate Hand Tools

INDUSTRIAL ENGINEERING is redesign (engineering) of Products, Facilities and Processes for Productivity increase.
Productivity Management Imperative for USA - McKinsey. Returning US productivity to its long-term trend of 2.2 percent annual growth would add $10 trillion in cumulative GDP over the next ten years (2023 - 2030).

INTRODUCTION TO MODERN INDUSTRIAL ENGINEERING. E-Book FREE Download. 


Hand tool manufacturers are continuously developing new hand tools and power tools that give more productivity. Motion study specialists and human effort engineers have to monitor developments in hand tools and power tools to do engineering economic analysis and acquire them for the organization as early as possible.

Combination tools save the time of releasing and picking the tools.

Read some of the claims made by tool manufacturers regarding productivity improvement possibility.

High Performance Tools for Carpet Cleaning
http://www.cfrcorp.com/docs/CFR108_Tools_fin.qrk.pdf

High Tension Hacksaw
https://www.milwaukeetool.com/press-releases/milwaukee-extends-hand-tool-line-with-high-tension-hacksaw

High Productivity Tools from Damar International
http://www.ainsmag.co.uk/powpr/4611da1a_wright_hand_tools.htm



Industrial engineers can also design hand tools. Their familiarity with number of hand tools will provide them with concepts to make more productive hand tools.


Information on more productivity improving hand tools welcome.

Guidelines for Layout around the Workstation

INDUSTRIAL ENGINEERING is redesign (engineering) of Products, Facilities and Processes for Productivity increase.
Productivity Management Imperative for USA - McKinsey. Returning US productivity to its long-term trend of 2.2 percent annual growth would add $10 trillion in cumulative GDP over the next ten years (2023 - 2030).

INTRODUCTION TO MODERN INDUSTRIAL ENGINEERING. E-Book FREE Download. 

Guidelines for  Layout around the Workstation to Increase Productivity of Operator Motions

The guidelines are based on principles of motion economy only.



(1) Both hands have to be utilized for productive work. If similar work is being done by each hand, there should be a separate bins for supply of materials or parts for each hand.

(2) If the eyes are used to select material, as far as possible the material should be kept in an area where the eyes can locate it without there being any need to turn the head.

(3) Use semi-circular arrangements as hands can move over semicircle only in sitting position.

(4) Provide comfortable seating Design the workplace using anthropometric data.

(5) Use appropriate bins depending on the shape of components and make it easy for the operators to pick up or slide the components.
accommodate material.
(6) Hand tools should be picked up with the least possible disturbance to the rhythm and symmetry of movements. As far as possible the operator should be able to pick up or put down a tool as the hand moves from one part of the work to the next, without making a special movement.
(7) As curved movements take less time compared to straight line movements and reversals, tools should be placed on the arc of movements, but  they have to be away from the path of movement of  material or components from bin to the work place.

(8) Tools should be easy to pick up and replace; as far as possible they should have an automatic return, or they should be at the place close to the location of the next piece of material to
be moved so that tool can be released and the material can be picked up.

(9) Finished work should be:
(a) dropped down a hole or a chute using a foot movement.
(b) dropped through a chute, as the hand making the first motion of the next cycle;
(c) put in a container placed so that hand movements are kept to a minimum;
(d) placed in a container in such a way that the next operative can pick it up easily.
(Industrial engineers have to learn the design of delivery chutes for components)

(10) Always look into the possibility of using pedals or knee-operated levers for locking or indexing devices on fixtures or devices for disposing of finished work.
(Industrial engineers have to learn the design of foot operated pedals and the mechanisms that transfer the motion to the workholding devices to release the component.)

Expert and Novice Performance in an Industrial Engineering - Book Information


https://books.google.co.in/books?id=FjUzaviHYoEC


Industrial Engineers work in many areas in engineering organizations

Manufacturing
Material handling
Maintenance
Product Design
Product packing
Stores and Material Handling in Stores
Inspection and Testing
Supply Chain  - Implementing industrial engineering in all supply chain partner organizations
Construction
Airconditioning and other utilities
Captive powerplants

Monday, September 5, 2016

Lathe Machine - Productivity - Efficiency Improvement


How to Increase Machining Efficiency through Machine Monitoring
A manufacturer that is distinctive for its attention to in-cycle machining productivity describes its efforts to obtain efficiency improvements outside of the machining cycle. The shop’s primary tool is a simple, daily, graphical recap that illustrates when each machine tool was and was not making parts.
2/1/2016 Modern Machine Shop, Peter Zelinski , Senior Editor
http://www.mmsonline.com/articles/how-to-increase-machining-efficiency-through-machine-monitoring


Improving CNC Machine Shop Efficiency and Productivity
[March 16, 2015]
http://advancedprecisionmachine.com/advanced-precision-machining-blog/improving-cnc-machine-shop-efficiency-and-productivity/

http://www.productionmachining.com/articles/monitoring-improves-machine-up-time-and-shop-efficiency

Innovative Techniques of Enegy-effeciency in Machining
Vivek Kumar*, Ayush Gupta*, Ishu Aggarwal* and Yatheshth Anand**
*Student, School of Mechanical Engineering, SMVDU.
** School of Mechanical Engineering, SMVDU.
Katra, Jammu, INDIA
Mechanical Engineering, SMVDU.
2014
http://www.ripublication.com/iraer-spl/iraerv4n3spl_15.pdf


Investigation on Automation of Lathe Machine
Prakash N. Parmar1, Prof. N. C. Mehta2, Prof. Manish V. Trivedi3
1Student of M.E. (CAD/CAM),
2Head of Department, Professor3, Department of Mechanical Engineering, Noble Engineering
College, Junagadh, Gujarat, INDIA.
International Journal of Emerging Technology and Advanced Engineering
Volume 4, Issue 5, May 2014)


EFFECTS OF VARYING JOB PARAMETERS ON RELEASE TIME
USING LATHE MACHINE
T. I. OGEDENGBE, Department of Mechanical Engineering, The Federal University of Technology Akure, Nigeria,
B. KAREEM, Department of Mechanical Engineering, The Federal University of Technology Akure, Nigeria, 
O. O. OJO, Department of Mechanical Engineering, The Federal University of Technology Akure, Nigeria,
International Journal of Engineering Innovation and Management 3 (2013)

Implementing a Preventive Maintenance Planning Model on an Ageing and Deteriorating
Production System
Richa Chouhan, Dr. Manoj Kumar Gaur†and Rohit Tripathi
HCTL Open Int. J. of Technology Innovations and Research
Volume 4, July 2013

Development of a new machining setup for energy efficient turning process
Conference Paper · April 2013
https://www.researchgate.net/publication/261224667_Development_of_a_new_machining_setup_for_energy_efficient_turning_process


Ten tips on improving productivity in Machine Shops.
Jul 05, 2008
http://www.teccarbidetools.com/tectools-blog/bid/4596/Ten-tips-on-improving-productivity-in-Machine-Shops

Improving energy efficiency of machine tools
T. Holkup 1, J. Vyroubal 1, J. Smolik 1
1 Research Center for Manufacturing Technology (RCMT), Czech Technical University in Prague,
Czech Republic
http://www.gcsm.eu/Papers/53/4.1_79.pdf

Tuesday, August 30, 2016

Institute of Systems and Industrial Engineers - Areas of Expertise


ABOUT IISE

Systems world view. Productivity. Efficiency.                   These are words that describe the distinctive attributes of industrial engineering, and IISE is the world's largest professional society dedicated solely to the support of the industrial and systems engineering profession and individuals involved with improving quality and productivity. Founded in 1948, IISE is an international, nonprofit association that provides leadership for the application, education, training, research, and development of industrial and systems engineering. ISEs figure out a better way to do things and work in a wide array of professional areas, including management, manufacturing, logistics, health systems, retail, service and ergonomics. They influence policy and implementation issues regarding topics such as sustainability, innovation and Six Sigma. And like the profession, ISEs are rooted in the sciences of engineering, the analysis of systems, and the management of people. Join today!   
(http://www.iienet2.org/Default.aspx  Accessed on 30 August 2016)

Systems world view indicates that industrial engineering take care of productivity and efficiency at the system level that is enterprise level.

The basic area of application of industrial engineering is engineering activities in any concern. To improve productivity and efficiency, industrial engineering improve technical processes. They also examine management processes being used in the engineering activities to assess the contribution of management processes to low productivity. If the productivity is low, they need to study the management process to identify better ways to improve productivity.  Industrial engineering was used by organizations in non engineering activities also. Experienced industrial engineers were successful in increasing productivity of non-engineering activities also. But it is essential to stress that primary job of industrial engineers is to improve engineering activities using engineering knowledge and knowledge in mathetatics, statistics, social sciences, engineering economics and human sciences.

Sustainability movement which stress resource efficiency is an area where industrial engineers can contributed once again especially in engineering concerns.

Industrial engineers are innovators as they redesign products and processes. So innovation is a subject of interest for industrial engineers.

Six sigma is a two decade old optimization technique based on statistical data collection and analysis. Industrial engineering discipline recognized the utility of six sigma in improving productivity and made the technique part of IE tool kit.

Thursday, August 11, 2016

Productivity, Industrial Engineering and Cost Reduction in Automobiles


Value Engineering of Automobiles



2012
https://www.atkearney.com/automotive/ideas-insights/article/-/asset_publisher/LCcgOeS4t85g/content/frugal-re-engineering-innovatively-cutting-product-costs/10192?_101_INSTANCE_LCcgOeS4t85g_redirect=%2Fautomotive%2Fideas-insights


Cost-effective continual re-engineering (or continuous improvement in manufacturing parlance) of a product is the essence of frugal re-engineering.

For example, plastic parts can be redesigned to be made of polypropylene instead of costlier fiber-reinforced plastic, and low-temperature specs can be relaxed for window-channel grease in temperate regions that don't have harsh winters.



2003

NISSAN CONTINUED TO LEAD THE INDUSTRY IN PRODUCTIVITY IN FISCAL
YEAR 2003. ITS PLANTS ARE CONSISTENTLY THE MOST PRODUCTIVE IN
JAPAN, THE US, AND EUROPE. WITH NISSAN PRODUCTION WAY,

The Nissan Smyrna Plant set a new benchmark for productivity in fiscal year 2003, according to Harbour Report North America. The Report noted that the plant, located in Tennessee state and which
produces the Altima, reached the figure of 15.74 labor hours per vehicle—the highest ever in the history of the Report.

In a remarkable seventh year running, Nissan’s Sunderland, UK plant was ranked number
one in Europe, according to the World Markets Research Centre. And Nissan remains the productivity leader at home in Japan.

Productivity alone is not the goal, of course. Through Nissan Production Way (NPW) , the company continues to work towards true Douki-Seisan—a build-to-order system schedule that is synchronized
with the customer’s needs, to provide a higher level of service, more individualized choice, and swifter product production and delivery. The NPW sets out two “never ending” goals: to continuously work for the synchronization of Nissan’s manufacturing with customer needs, and an ongoing
quest to identify problems in the manufacturing process and to put solutions in place.

http://www.nissan-global.com/EN/DOCUMENT/PDF/AR/2003/ar2003_10.pdf


Updated 13 August 2016,  17 June 2015

Monday, August 8, 2016

August Second Week - Industrial Engineering Knowledge Revision

Methods Efficiency Engineering - Analysis of Working Conditions and Method





Work is done most effectively and efficiently under good, comfortable working conditions.

Questions. The industrial engineering, during operation analysis, should consider the following points :

1. Is light ample and sufficient at all times?

2. Are the eyes of the operator protected from glare and from reflections from bright surfaces?

3. Is lighting uniform over the working area?

4. Has lighting been checked by an illumination expert?

5. Is proper temperature for maximum comfort provided at all times?

6. Is plant unduly cold in winter, particularly on Monday mornings ?

7. Is plant unduly warm in summer?

8. Would installation of air-conditioning equipment be justified?

9. Can fans be used to remove heat from solder pots, furnaces, or other heat-producing equipment?

10. Could an air curtain be provided to protect operator from intense heat?

11. Is ventilation good?

12. Are drafts eliminated?

13. Can fumes, smoke, and dust be removed by an exhaust system?

14. Is floor warm and not damp?

15. If concrete floors are used, can mats or platforms be provided to make standing more comfortable?

16. Are drinking fountains located near by?

17. Is water cool, and is there an adequate supply?

18. Are washrooms conveniently located?

19. Are facilities adequate and kept properly clean?

20. Are lockers provided for coats, hats, and personal belongings?

21. Have safety factors received due consideration?

22. Is floor safe, smooth but not slippery?

23. Is wooden equipment, such as work benches, in good condition and not splintery?

24. Are tools and moving drives and parts properly guarded?

25. Is there any way operator can perform operation without using safety devices or guards?

26. Has operator been taught safe working practices?

27. Is clothing of operator proper from safety standpoint?

28. Are workplace and surrounding space kept clear at all times?

29. Do plant, benches, or machines need paint?

30. Does plant present neat, orderly appearance at all times?

A brief discussion of a few of the principal factors:

Light, Heat, and Ventilation. 


Light, heat, and ventilation are matters to be designed by the illumination and heating engineers. But, the industrial engineering can tell by personal observation when these conditions are bad, and he can point out the effect that they have on production. Accurate work, for instance, cannot be done in the dark  and improper lighting conditions have to be corrected. In many communities, the utility companies provide experts who will survey lighting conditions and make recommendations without cost. Advantage should be taken of this service even where lighting to the untrained observer appears fairly good. Eyestrain is a serious matter and can and should be eliminated.

It has been shown conclusively by researchers that good working conditions pay. Although it is often difficult to measure directly and immediately the saving brought about by the installation of a new lighting or heating system, it is a good policy to recommend their provision wherever the present systems are found to be inadequate. Throughout industry, it is found that the plants which provide the best working conditions are those which are leaders in their field. This alone would indicate that the provision of good conditions is a profitable investment.

Safety


Safety engineering and methods engineering are closely related. The methods engineer is interested in labor efficiency and effectiveness. In order to work effectively, the operator must be able to concentrate upon the work at hand. If an accident hazard exists, however, he must divide his attention between doing the job and keeping out of danger. Therefore, the methods engineer is interested in the elimination of accident hazards.

As the result of his detailed study of all aspects of production,  industrial engineering is in an excellent position to discover accident hazards and to make suggestions for their elimination. He studies every move made by the operator, and hence he discovers the moves that carry parts of his body into a danger zone. He "can then either eliminate the moves by changing the motion sequence or take steps to have the danger zone guarded.

A kick press equipped with a safety device  and the operation analyst was informed that the device was foolproof, that it was the best safety device in the department. The analyst observed the operation of this safety device along with all the other factors of the job. In order to operate the kick press, the operator had to place the material in position, grasp the two bars, and swing them to one side. He then stepped on the treadle of the machine and performed the operation.

The operation appeared clumsy and inefficient to the analyst. Because the material could not be held in place by the operator, it tended to slide out of position. Clips were provided to hold it down, but to use them required so much time that the operator preferred not to do so. As a result, the material did slip out of position occasionally, and scrap was produced. The movements necessary to operate the bars carried the hands of the operator out of the danger zone, but they were fatiguing and time-consuming. A further investigation showed that the safety device could be circumvented very easily. If after making a stroke with the press, the operator did not allow the treadle fully to return to the off position, the bars rested in a position and there was plenty of room to draw material through the die. When the treadle was depressed again, the bars slid to the position in which small and inconspicuous block of wood affixed to the treadle of the machine would prevent it from returning to its off position, and hence the operation could be done easily without using the safety device.

The industrial engineers and the safety engineer,  then proceeded to devise a new  guard . This guard really is foolproof. The operator cannot get his fingers under the die in any way, but he has complete control of the operation at all times. As a result, the operation is safer and much faster than it was before.


Other Working Conditions


Space is provided on the analysis sheet for comments about any factors that affect the operation that have not previously been considered. The following list of questions will indicate the kind of items that should be considered at this point:

1. How is the amount of finished material counted?

2. Is there a definite check between pieces completed and pieces paid for?

3. Can automatic counters be used?

4. Is pay-roll procedure understandable?

5. Is the design of the part suitable to good manufacturing ' practices?

6. What clerical work is required from the operator to fill out time cards, material requisitions, and the like?

7. Can this work be delegated to a clerk?

8. What sort of delay is likely to be encountered by the operator, and how can it be avoided?

9. How is defective work handled?

10. Should operator grind his own tools, or should this be done in toolroom?

11. Should order department be requested to place fewer orders for larger quantities?

12. What is the economic lot size for the job being analyzed?

13. Are adequate performance records maintained?

14. Are new men properly introduced to their surroundings, and are sufficient instructions given them?

15. Are failures to meet standard performance requirements investigated?

16. Are suggestions from workers encouraged?

17. Do workers understand the incentive plan under which they work?

18. Is a real interest developed in the workers in the product on which they are working?

19. Are working hours suitable for efficient operation?

20. Is the utilization of costly supply materials checked?

It will be seen from the general nature of the questions listed above that the methods engineer recognizes his responsibility toward everything connected with the job he is analyzing. It will not satisfy him to say that the designs are made by the engineering department or that the shop routine is set up by the management. He realizes that his own intimate knowledge of shop methods and conditions gives him an advantage which many other members of the organization do not possess, and he therefore feels it his duty to question all phases of manufacture in the hope of revealing possibilities for improvement.

For example, a designer who is making a drawing of a steel shaft, having in its length several different diameters, knows how to lay out the shaft, taking into consideration strength, size, and suitability of purpose. He probably knows in a general way that the shaft will be turned on a lathe and that at the junction of two sections of different diameters it is better from the standpoint of ease of machining to call for a fillet with radius r as ia (a), Fig. 105, rather than to specify a squared-out corner as shown in (&) of the same figure. What he may not realize, however, is that for reasons of manufacturing economy, the fillet is machined with a specially ground tool, known as a "radius tool" which is the exact size of the radius to be turned. Therefore, if there are several fillets to be turned on the same shaft, he may call for, say one 1/4-inch radius, two 3/8-inch radii, and one  1/2-inch radius, being governed largely by the difference in the diameters of the adjacent sections.

If this incorrect and unnecessary feature of design is allowed to pass unchallenged, it means that three radius tools must be used instead of one. When the shaft is turned on an engine lathe, time for two extra " change tool " operations must be allowed. This is unnecessary and wasteful, and the design should be changed.

From the nature of the many examples of operation improvements that have been given throughout this book, it will be seen that if the analyst is to do his work so as to bring about maximum manufacturing economy, he must concern himself with every detail connected with every job he studies. Common sense, of course, must be used in interpreting this statement. In practical work, it means that the analyst should consider, at least briefly, every detail that is likely to affect operation time.

Method. 


All analysis work is done for the purpose of improving the method by which the operation is done. The various factors that affect method directly or indirectly are considered in detail, and improvements are made wherever possible. As a result, many economies are made that eliminate motions and reduce costs.

Before the study can be considered complete, however, the motions that remain and that appear to be necessary must themselves be studied in considerable detail. It is not enough to say that a part is to be obtained by picking it out of the gravity delivery chute. The location of the end of the chute should be such that the hand can move between it and the point where the material is worked upon with the shortest and lowest class motion. The height of the chute should be such that the transport motions can be made without a change of direction. The motions used for grasping must be worked out so that the fewest possible are employed. If two parts are required, it must  be decided whether they are to be grasped and transported together or separately. The best position of the hand and of the material in the hand must be determined so that no time is lost in positioning the material at the place of work.

In short, every motion must be analyzed in detail for the purpose of shortening it and making it as effective as possible. This, a secondary form of analysis, is known as motion study. Motion study is itself a detailed procedure which will require as lengthy a discussion as the subject of operation analysis. Therefore, it will merely be mentioned here that motion study is the next logical step in the methods study after operation analysis.

Full Knol Book - Method Study: Methods Efficiency Engineering - Knol Book



Modified and unpdated on 10 August 2016
Updated 4 July 2015, First published 24 Nov 2011

Monday, August 1, 2016

August First Week - Industrial Engineering Knowledge Revision








In this month's revision plan the focus is on production process improvement which also includes management of processes. If management is responsible for poor productivity, industrial engineers have to propose changes in management methods, practices and tools to improve productivity.

Process Efficiency Improvement

Technology Efficiency Engineering
_______________________

_______________________



First Week

   The Function of Methods Efficiency Engineering
   Approach to Operation Analysis as a Step in Methods Efficiency Engineering

   Scope and Limitations of Methods Efficiency Engineering
    Operation Analysis Sheet

    Using the Operation Analysis Sheet
    Analysis of Purpose of Operation

    Analysis of All Operations of a Process as a Step of Each Operation Analysis
    Analysis of Tolerances and Inspection Standards

    Analysis of Material in Operation Analysis
    Tool Related Operation Analysis

Thursday, July 28, 2016

You Can Reduce Fuel Costs - Ideas For Fuel Cost Reduction



Fleetmatics Helps in Fuel Cost Reduction



REDUCING FUEL COSTS WITH GPS TRACKING

Companies that have multiple vehicles that rely on gasoline or diesel fuel to service their customers have an entire staff of drivers, and a responsibility to see that those drivers are making the most efficient use of their vehicles, time and fuel. Without close supervision and sophisticated monitoring systems to control these factors, they are in danger of losing profits due to these unmanaged costs.

You can download a White Paper Containing:

How GPS Tracking can Impact Fuel Costs
3rd Party Research & Case Studies on fuel cost reduction
https://www.fleetmatics.com/resources/white-papers/reduce-fuel-costs

Friday, July 15, 2016

Exploring Engineering - Book Information



https://books.google.co.in/books?id=A96oBAAAQBAJ


Exploring Engineering: An Introduction to Engineering and Design

Philip Kosky, Robert T. Balmer, William D. Keat, George Wise
Academic Press, 11-Jun-2015 - Technology & Engineering - 552 pages


Exploring Engineering, Fourth Edition: An Introduction to Engineering and Design presents the emerging challenges engineers face in a wide range of areas as they work to help improve our quality of life. In this classic textbook, the authors explain what engineers actually do, from the fundamental principles that form the basis of their work to the application of that knowledge within a structured design process. The text itself is organized into three parts: Lead-On, Minds-On, Hands-On. This organization allows the authors to give a basic introduction to engineering methods, then show the application of these principles and methods, and finally present a design challenge. This book is an ideal introduction for anyone interested in exploring the various fields of engineering and learning how engineers work to solve problems.

Organization of Industrial Engineering Department - Suggestion by Hugo Diemer in 1912


HUGO DIEMER, M.E., Professor of Industrial Engineering, Pennsylvania State College, and Consulting Industrial Engineer.

Hugo Diemer was the first faculty member of Industrial Engineering and he developed the first undergraduate programme in industrial engineering in Pennsylvania State College.

In the following article he explained the development of staff assistance to manufacturing department.

Factory Organization in Relation to Industrial Education
Author(s): Hugo Diemer
Source: The Annals of the American Academy of Political and Social Science, Vol. 44, TheOutlook for Industrial Peace (Nov., 1912), pp. 130-140
Published by: Sage Publications, Inc. in association with the American Academy ofPolitical and Social Science


Type of Staff Organization to be Applied to Manufacturing Side of Industries.



Mr. Harrington Emerson suggested staff control to cover four groups: 1, men; 2, materials; 3, equipment; 4, methods and conditions.

Mr. Frederick Taylor advocated  shop control to be handled by four types of executive functional heads whom he designates as 1, "gang boss;" 2, "speed boss;" 3, "inspector," and 4, "repair boss."

Diemer proposed staff departments for  1. records; 2. materials; 3. plant, equipment and processes; 4. men.

Work of  functional staff departments 


Department of Records.

It is primarily a research and advisory department the results of whose investigations and whose recommendations are brought up at such meetings of department heads and others as may have been predetermined. It is the duty of the record department to see that from each set of records is secured a method of most effective analysis so that the records of the past may be compared with records of the present and conclusions may be drawn as to future action. The individuals engaged in this department must be experts in theory of accounts, the science of statistics, the art of graphical presentation and cost accounting. The tendencies and facts indicated by an analysis of the records must be brought forcibly to the attention of all individuals whose actions based on experience and intuition differ from the action indicated by an analysis of figures, records and statistics.


Department of Materials.
This department assesses relation between materials indicated by the technology (designs) and the availability of various materials in the market, with constant attention to cost reduction as well as the bettering of product.

Department of Plant, Equipment and Processes.

This department is concerned with: 1., routing; 2. scheduling; 3. motion and time studies; 4. preparation of instruction sheets and cards; 5, standardization of equipment. In all of these matters the work of the staff department ends with the adoption of the method.

The routine work is carried on by men adapted to carry out routine work successfully that is line management and operating employees. For instance, the routine work of the planning or production department, is not a staff department activity.

1.Routing.-This involves a study of the processes and product and the preparation of process maps for the various classes of product and determination of most predominant paths, together with floor spaces, weights, bulks, etc., involved, and recommendations as to rearrangements of equipment, and departments and proposals as to building modifications and extensions. It consists further in the designation of which department, machine and class of individuals are to perform the operations indicated by the instructions and the recording of such assignments in such a way that the scheduling department can, in consultation with the department of records, prepare means for enabling the planning or production department to have positive definite information as to the work ahead for each individual, machine and department.

2. Scheduling.-This consists of the determination of the manner in which all orders which are to be worked on by the various departments of the establishment are to be listed so as to determine their sequence and the methods of preparing a definite program in order that the shop may be provided by the production department with a daily schedule covering the sequence of all work for the day.

3. Motion and Time Studies.-Motion study consists of the analysis of each process into its ultimate simplest steps, and the elimination of useless or improper motions. This process is prerequisite to and more difficult than time study, which consists in the timing with a stop watch all the elements indicated by the motion study. Based on motion studies, detailed instructions are to be prepared which are to be the standard practice and are not to be departed from. Proposals for different steps or methods from the standard are to be encouraged and duly rewarded if they result in improvements. The instruction sheets are to be furnished to the production or planning department by the staff department on plant, equipment and processes in just the same manner that the designing department furnishes the detailed shop working drawings for the designed product.

4. Standardization of Equipment.-This covers all items other than those involving motion and time studies, such as tools, appliances and fixtures.

5. Department of Men.-This staff department will consider: i). hygiene and efficiency; ii). psychology and efficiency; iii). industrial education and efficiency; iv).  development of loyalty, through social and religious activities.

Hygiene and Efficiency.-This section will deal with hygiene aspects like adequate provisions for pure and abundant drinking water, proper sanitary and toilet arrangements, first aid to the injured, eye-strain due to poor light, poorly directed light, glare, lassitude due to impure air or too dry air, discomfort due to temperature being too hot or too cold, together with installation of proper remedies and maintenance of proper conditions.

Psychology and Efficiency.- Careful researches must be made as to the presence of avoidable fatigue due to such factors as monotony of occupation, long maintenance of a single position, constant repeti- tion of certain movements, lack of conversation, studies of temperaments of eligible candidates for promotion so as to give due consideration to these characteristics of future gang leaders, assistant foremen, foremen and other officials.   Sympathy and discipline have to be simultaneously displayed by leaders of people.


Industrial Education.-This department provides for training of apprentices, and provides  means for each individual, so far as possible, for attaining greater efficiency. There must be systematic selection of each individual for his work and he must be given planned systematic training for further development.  This department also takes care of shop library or libraries.

Development of Loyalty Through Social and Religious Activities.- Systematic and continuous efforts must be made to make each individual's work inspiring and to get each man interested in his work. The system of promotion must be such as to afford numerous examples whereby ambition may be preserved.  Activities in the interests of good fellowship and social democracy will tend toward fair play for all and the avoidance of sharp practices in the dealings of employees with each other.


It is interesting to note this function indicated by Diemer.
4. Standardization of Equipment.-This covers all items other than those involving motion and time studies, such as tools, appliances and fixtures.

Industrial engineering has not developed adequately this aspect of industrial engineering.


Department of Materials.
This department assesses relation between materials indicated by the technology (designs) and the availability of various materials in the market, with constant attention to cost reduction as well as the bettering of product.

Department of materials is also an interesting idea that was later developed into value engineering by L.D. Miles.






Wednesday, July 13, 2016

Principles of Industrial Engineering - Centenary Year

The book, Principles of Industrial Engineering, by Charles Buxton Going was published in the year 1911. 2010-11 is its centenary year. Industrial engineers can read this book now in http://www.archive.org/details/principlesofindu00goinrich.

In the first chapter Going explained the work of industrial engineers in a very clear and vivid manner. Every industrial engineering student is to be advised to read this chapter. The chapter is given below. (Summary of the chapter is available in  What is industrial engineering? Going's Answer in 1911  )

This book has survived long enough for the copyright to expire and the book 
to enter  the public domain.  A public domain book is one that was never subject 
to copyright or whose legal copyright term has expired. 

CHAPTER I 

____________________________________________________________________________
 


THE ORIGIN OF THE INDUSTRIAL SYSTEM 

INDUSTRIAL engineering is the formulated science of management. 
It directs the efficient conduct of manufacturing, construction, transportation, or even 
commercial enterprises of any undertaking, indeed, in which human labor is directed to 
accomplishing any kind of work. It is of very recent origin. 

Indeed, it is only just emerging from the formative period has only just crystallized, so to
speak,from the solution in which its elements have been combining during the past one or
two decades. The conditions that have brought into being this new applied science, this
new branch of engineering, grew out witnessed in other fields of human effort when some
great change, internal or external, forced them from a position of very minor importance
into that of a of the rise and enormous expansion of the manufacturing system. This
phenomenon of the evolution of a new applied science is like those that have been major
service to civilization. Columbus could blow across the ocean in a caravel to an unknown
landfall; but before a regular packet service could be its own, by which new practitioners
can be trained, by which certainty, safety run between New York and Liverpool navigation
must be made a science.
It has drawn upon older, purer sciences for its fundamental data upon astronomy, meteorology
and hydrography, and later upon marine steam engineering and electricity; but out of all 
these it has fused a distinct body of science of and efficiency of performance may be 
substantially assured. 

Navigation is not merely making correct observation of the sun and stars, of lights and
beacons, of log and lead; it is not merely directing the propelling and steering machinery;
it is not merely knowledge of courses and distances; it is not merely storm strategy. It is
the co-ordination of all these in handling the equipment provided by the marine engineer and
naval architect, through the work of a crew of men.
In somewhat like manner, industrial engineering has drawn upon mechanical engineering, upon
economics, sociology, psychology, philosophy, accountancy, to fuse from these older sciences 
a distinct body of science of its own. It does not consist merely in the financial or 
commercial direction, nor merely in running the power-plant or machinery, nor merely in 
devising processes or methods. It consists in co-ordinating all these things, and others, in 
the direction of the work of operatives, using the equipment provided by the engineer, 
machinery builder, and architect. 

The cycle of operations which the industrial engineer directs is this: Money is converted 
into raw materials and operations of purchase, manufacture, sale, and the administration 
connected with each. labor; raw materials and labor are converted into finished product or 
services of some kind; finished product, or service, is converted back into money. The 
difference between the first money and the last money is (in a very broad sense) the gross 
profit of the operation. Part of this is absorbed in the intervening conversions

Now the starting level (that is, the cost of raw materials and labor) and the final level
(the price obtainable for finished product) these two levels are generally fixed by
competition and market conditions, as surely and as definitely as the differences in level
between intake and tail race are fixed in a water power. Hence our profit, like the energy
conversions between these levels. In the hydroelectric delivered at the bus bars, varies not
only with the volume passing from level, to level, but with the efficiency of the losses are
commercial, manufacturing, administrative. It is power-plant, the conversion losses are
hydraulic, mechanical and electrical. In any industrial enterprise the conversion many
mechanical engineers superintending special depart- with the efficiency of these latter
conversions that industrial engineering is concerned.
The industrial engineer may have in his organization staff cient and economical production.
He is concerned not only ments  design or construction, or the power-plant, for in- 
stance  while his own duty is to co-ordinate all these factors, and many more, for the one 
great, central purpose of effi- is the inclusion of the economic and the human elements es- 
with the direction of the great sources of power in nature, but with the direction of these 
forces as exerted by machinery, working upon materials, and operated by men. It 
pecially that differentiates industrial engineering from the agement of men and the 
definition and direction of policies older established branches of the profession. To put it 
in another way : The work of the industrial engineer not only covers technical counsel and 
superintendence of the technical elements of large enterprises, but extends also over the 
man- is analytical  we might almost call it passive to distinguish in fields that the 
financial or commercial man has always considered exclusively his own. 

In general, the work of the industrial engineer, or, to use a yet more inclusive term which 
is coming into general use, the efficiency engineer, has two phases. The first of these in a 
form that increases our useful working knowledge of it from the second phase, which is 
synthetic, creative, and most emphatically active. The analytical phase of industrial or 
efficiency engineering deals merely with the things that already exist. It examines into 
facts and conditions, dissects them, analyzes them, weighs them, and shows them are normal. 
To this sort of work Harrington Emerson ap- the industry with which we have to deal. To this province 
of industrial engineering belong the collection and tabulation of statistics about a business,
the accurate determination and analysis of costs, and the comparison of these costs with 
established standards so as to determine whether or not they systematic inquiry into the 
means and methods used for replies the term ** assays," speaking of labor assays, expense 
assays, etc., and maintaining (with good reason) that the expert efficiency engineer can make determinations of this 
sort as accurately, and compare them with standards as intelligently, as an assayer can 
separate and weigh the metal in an ore. To this province belong also such matters as 
total result are often made surprisingly and effectively man-
ceiving, handling, and issuing materials, routing and transporting these materials in process
of manufacture, the general arrangement of the plant, and the effect of this arrangement upon
economy of operation. To this province belongs, also, the reduction of these data and other 
data to graphic form, by which their influence and bearing upon 
ifest. It is wonderful how much new knowledge a man The great purpose and value, indeed, of 
these analytical may gain about even a business with which he thinks he is thoroughly 
familiar by plotting various sorts of data on charts where, say, the movement of materials 
back and forth, or the rise of costs under certain conditions, are translated immediately 
into visible lines instead of being put into the indirect and rather unimpressive form of 
long descriptions or tabular columns of figures. 




creative and synthetic phase, goes on from this point and functions of industrial engineering
is that they visualize the operations of the business and enable us to pick out the weak
spots and the bad spots so that we can apply the right remedies and apply them where they are needed. They make us apprehend the presence and the relative importance of elements which would otherwise
remain lost in the mass, undetected by our unaided senses. 

The second phase of industrial engineering the active, 
ufacture; the correction of inefficiencies, whether of power, effects improvements, devises
new methods and processes, introduces economies, develops new ideas. Instead of
merely telling us what we have been doing or what we are doing, it makes us do the same thing
more economically or shows us how to do a new thing that is better than the old. 
To this part of works management belongs, for example, the rearrangement of manufacturing 
plants, of departments, or of operations so as to simplify the process of man- 
requires that he shall have technical knowledge and scien- transmission, equipment or labor;
the invention and application of new policies in management which make the ideals
and purposes of the head operate more directly upon the conduct of the hands; the devising
of new wage systems by which, for example, stimulus of individual reward proportioned to 
output makes the individual employee more productive. 

The exercise of these functions, whether analytical or creative, by the industrial engineer 
or the efficiency engineer, 
It deals with materials, but not so much with their me
tific training, but in somewhat different form from the equipment of the mechanical engineer
and somewhat differently exercised.
Industrial engineering deals with machinery; but not so much with its design, construction,
or abstract economy, which are strictly mechanical considerations, as with selection, 
arrangement, installation, operation and maintenance, and the influence which each of these 
points or all of them together may exert upon the total cost of the product which 
that machinery turns out. 

in progress and visualizing the result so that the manager
chanical and physical constants, which are strictly technical considerations, as with their
proper selection, their standardization, their custody, transportation, and manipulation.
It deals very largely with methods ; but the methods with which it is particularly concerned
are methods of performing work; methods of securing high efliciency in the output of 
machinery and of men; methods of handling materials, and establishing the exact connection 
between each unit handled and the cost of handling; methods of keeping track of work 
their most effective work.
of the works may have a controlling view of everything that is going on; methods of recording
 times and costs so that the efficiency of the performance may be compared with known 
standards; methods of detecting causes of low efficiency or poor economy and applying the 
necessary remedies. 

It deals with management that is, with the executive and administrative direction of the 
whole dynamic organization, including machinery, equipment and men. 

It deals with men themselves and with the influences which stimulate their ambition, enlist 
their co-operation and insure 

chanical engineer, the electrical engineer, the mining en-
It deals with markets, with the economic principles or laws affecting them and the mode of
creating, enlarging, or controlling them. 

The most important elements of industrial engineering are summed up in this alliterative list
 machinery, materials, methods, management, men and markets. And these six elements are 
interpreted and construed by the aid of another factor whose name also begins with  Money. 
Money supplies the gauge and the limit by which the other 
 

factors are all measured and adjusted. This of course is true not alone of industrial 
engineering; the civil engineer, the mechanical engineer being retained to carry out some 
piece of 
gineer, each and all must normally be expected to make money for his employer or client. One 
of the simplest principles of the profession, but one which the mere technician sometimes 
finds it hardest to keep in mind, is that the primary purpose for which the engineer is 
usually engaged is to direct the employment of capital so that it may pay back 
dividends to its owners. And while this is generally true of all engineering employment, it 
is most particularly, con- 
tinuously and everlastingly true of works management. It is much easier to conceive of the 
civil engineer or the me- 
work in which scientific accuracy is demanded regardless of the $75 cost with some actual 
item of material, labor, or cost, than it is to conceive of a shop superintendent being 
directed or even permitted to manufacture a line of product regardless of cost. 

It is the ever-present duty of the industrial engineer, of the efficiency engineer, to study 
constantly, and to study constantly harder and harder, the question of equivalency between 
the dollars spent and the things secured. It is not sufficient, for example, for him to know 
that a machine sold for $100 costs $75 to make. This may be a very good 
profit and the machine itself may be an excellent one. There may be vouchers honestly 
connecting every cent of expense. Nevertheless, the industrial engineer must con- 
dustrial engineer is tt) determine with the utmost possible stantly look back of these
figures to see whether by some change of machinery, some modification of materials, some
alteration of methods, some higher skill in management, some stimulus to the men, he can
make the machine cost less than $75 for its manufacture, or can make it a better ma- 
chine for the same cost, or perhaps can do both. 

In short, the industrial engineer is under unending and unremitting pressure to secure a true
 proportion between what he spends and what he gets. And the proportion is never true so 
long as the smallest opportunity remains for getting more in return for what he spends, or 
for spending less in payment for what he gets. The function of the in- 
afterward, as they were under the older order. If you con-
wisdom and insight whether and where any disproportion between expenditure and return exists,
 to find the amount of the disproportion, the causes of such disproportion, and to 
apply effective remedies. 

The forces causing this pressure for the reduction of cost are principally two. The older 
and cruder is competition. The later and larger, which in itself carries the answer to 
competition, is the effort toward efficiency. 

Competition was not created by the manufacturing system. It existed from the foundation of 
the world. But it took on a new meaning and new activity when the things began to be made 
first and sold after (as they are under the manufacturing system) instead of being sold first
 and made 
he can only compare the thing which has been made with what
tract to buy something which is not yet in existence a bridge, a house, a suit of clothes, or
 what not the bargain is largely a matter of estimate, often, indeed, a matter of guess work,
 on both sides. You have to strike a mental balance between the several alternatives 
presented and compare in your mind net results of cost, design, quality, certainty and 
promptness of delivery, personality, credit, and perhaps many other things, some of them 
intangible, and some only to be proved by the outcome. The proposition that seems 
most attractive is closed; the competing ones are never carried out at all. The buyer never 
can tell with absolute certainty whether or not he got the best value for his money; 
the ability to reduce costs become fundamental. Competi-
he thinks the other things would have been if they had been made. The seller does not know
until everything is over whether or not he made a profit, or how much. But when you sell 
things already made, like lathes or high-speed engines or dynamos, off the sales-room floor, 
the prospective buyer can make the most absolute and intimate comparison between the things 
and their prices. He can compare Brown & Sharpe with Lodge & Shipley, Harrisburg with 
the Ball engine, Westlnghouse with Crocker- Wheeler. He can compare accurately design, 
quality, cost before a word or a dollar passes. The necessity for offering the best goods 
for the least money and yet making a fair profit becomes vital and insistent, and so the 
knowledge of actual costs and secured among producer, consumer, and employee. Effi- 

tion has therefore been in one way a tremendous force for economy in manufacturing. And yet, 
by a paradox, in another way competition has been one of the great sources of waste, by 
causing duplication of plant, of organization, of equipment, of sales effort, and of 
middle-men — none of which may have any better reason for existence than some- 
one's desire to share in tempting-looking profits, but all of which must be paid by the 
consumer — all of which become a burden on society at large. 

The new and ethically fine ideal, therefore, is efficiency the reduction of costs and the 
elimination of waste for the primary purpose of doing the thing as well as it can 
be done, and the distribution of the increased profits thus 
ciency is a concept as much finer than competition as crea- 
inefficient and develop the efficient, thus producing a nation
tion, conservation, is finer than warfare. It is a philosophy an interpretation of the relations of things that may be applied not only to industry but to all life. Let me quote a few sentences from Harrington
 Emerson's ** Efficiency as a Basis for Operation and Wages " : 

** If we could eliminate all the wastes due to evil, all men would be good; if we could 
eliminate all the wastes due to ignorance, all men would have the benefit of supreme wisdom; 
if wc could eliminate all the wastes due to laziness and misdirected efforts, all men would 
be reasonably and health- fully industrious. It is not impossible that through efficiency 
standards, with efficiency rewards and penalties, we could in the course of a few generations
 crowd off the sphere the of men good, wise and industrious, thus giving to God what 
is His, to Caesar what is his, and to the individual what is shall see particularly something
 that it is of the utmost im- 

his. The attainable standard becomes very high, the attainment itself becomes very high. . . 

" Efficiency is to be attained not by individual striving, but solely by establishing, from 
all the accumulated and available wisdom of the world, staff-knowledge standards 
for each act by carrying staff standards into effect through directing line organization, 
through rewards for individual excellence; persuading the individual to accept staff stand- 
ards, to accept line direction and control, and under this double guidance to do his own 
uttermost bpst." 

Efficiency, then, and in consequence industrial engineering, which is the prosecution of 
efficiency in manufacturing, involves much more than mere technical considerations or 
technical knowledge. If we consider the way in which the manufacturing system came into 
existence, we can quite easily and clearly discover its most important elements; wc 
practical achievement must always be interwoven with the*
portance for us to understand, and that is that it did not originate in technical advances
alone, and it has never depended upon technical advances alone, but it has been in- 
fluenced at least in equal and perhaps in larger proportion by economic or commercial 
conditions, and by another set of factors which are psychological that is, which have to 
do with the thoughts and purposes and emotions of men. 

The point is very important, because true and stable in- 
dustrial progress, whether for the individual, the manufac- 
turing plant or corporation, or the nation at large, depends
upon a wise co-ordination and balance between technical, 
commercial, and human considerations. It is frequently 
necessary in addressing a commercial audience to empha- 
size the importance of the technical element. Before a 
technical audience, on the other hand, emphasis must often 
be laid on the commercial and psychological factors that in 
had been perfected to a point of practical service.
technical factor. Every great industrial organization and every great step in industrial progress to-day includes all three elements, but they will perhaps appear more distinct if we look at the origin and source of the manufacturing sys- tem, out of which this new science of industry has sprung. The origin of the manufacturing system was clearly enough the introduction of a group of inventions that came in close sequence about the end of the eighteenth century and be- ginning of the nineteenth. These were the steam engine, mechanical spinning and weaving machinery, the steamboat, the locomotive, and the machine-tool. It is commonly as- sumed that the great cause of the entire movement was Watt's improvement of the steam engine — that the indus- trial era which began a little more than a century ago was, so to speak, waiting in suspense, in the hush of things un- born, ready to leap into being as soon as the prime mover
ways had something near the quality and quantity of en-
This view seems to be incomplete. The steam engine had been discovered, forgotten, and rediscovered, it would be difficult to say how often, from the time of Hero or earlier down to the time of Watt — forgotten and ignored because the world had no use for it ; the economic conditions were not ripe for it. If there had been the same demand for power to pump the mines in England, the same demand for machinery in the textile industries of England, the same need for better vehicles to transport commercial products by land and by sea, in the time of Papin or the Marquis of Worcester that there was in the time of Watt, I think it is quite conceivable that the inventions which made Watt fa- mous would have come a full century earlier, and his genius would have been exerted upon a later stage of the problem, as the genius of Willans and Corliss and Parsons and Curtis has been within the period of our own lives. I am strongly inclined to believe that the world has al-
success depends upon commercial opportunity. There must
gineering talent it has been able to use. When civilization was dependent chiefly upon roads, aqueducts, bridges and buildings, it got them. We have never done some of these things better, technically speaking, than the Assyrians, or the Romans, or the architects of the great cathedrals of the middle ages; some, indeed, we perhaps never shall do again as well. Newcomen, Watt, Arkwright, Stephenson, Besse- mer, applied genius to a new sort of opportunity, rather than embodied in themselves a new order of genius. They may indeed have been greater than other workers who preceded them, but the more important element in their success is that the world was at last ready and waiting as it never had been before for the peculiar product of genius they had to offer. This readiness that opened the door to their success was due to economic or commercial conditions, not merely to the technical invention. In its larger relations, then, technical be a potential market. Bessemer steel could not have found
mercial factor. There must be a potential market; but it
any welcome in the Stone Age. The typewriter would not have succeeded in the dark ages when no one but a few clerics could read and write. Savages who traded cocoa- nuts for beads and brass wire could afford no encouragement to the manufacturer of the cash register or the adding ma- chine. It was not because of thermodynamic inefficiency that Hero's engine failed of adoption. On the other hand, when the world was ready for steam power it accepted very gladly to begin with a very crude machine, and technical im- provement went step by step with larger practical utilization, sometimes leading and sometimes following. There must, then, be a potential market or application, or advance in the applied sciences will be limited. This is an axiom to be placed alongside of another — that there must be scientific study and research, or industries based upon the applica- tions of science will stagnate and remain at a low stage of efficiency. The second factor in industrial progress, then, is the com-
shown us that in many cases there is no such thing as a fixed
does not follow from this that technical progress is wholly subordinate to economic conditions. The inventor or the engineer is not of necessity merely a follower of progress in commerce or industry. Many of the great* advances in ap- plied science, or in branches of industrial achievement per- haps too lowly to be called applied science, have been made by man who foresaw not only technical possibilities but commercial possibilities — who undertook not only to per- fect the invention but to show the world the advantage of using it. I think this was substantially the case with wire- less telegraphy, with the cash register and typewriter. No- body had demanded these things because nobody had thought of them, and the productive act in each instance included not only technical insight into the possibilities of doing the thing, but human insight into the fact that people would ap- preciate these things and use them if they could be furnished at or below a certain cost. Modern industrial methods have
cian. This would not have been because the extraordinary
demand beyond which supply can not be absorbed, but that demand is a function of cost of production. There may be no demand at all for an article costing a dollar, but an al- most unlimited demand for the same article if it can be sold at five cents. A large part of the work of the production engineer lies in the creation of methods by which the cost of production is decreased and the volume of production is thereby increased, with advantages to both the producer and the consumer. In all these cases you see that technical achievement, technical success, is closely
interlocked with industrial or economic conditions, and with the understanding and control of
industrial or economic influences and forces. 

The third factor in industrial progress is the psychological factor — the element 
contributed by the mental attitude, emotions, or passions of men. I might suggest its 
possible importance by reminding you that there were centuries in which the inventor of the 
steam engine, far from being rewarded, would have been burned at the stake as a magi- 
ficient to energize an industrial movement. In the case of
character of the achievement was unrecognized, but because its nature was misinterpreted.
That particular form of expressing intellectual dissent has gone out of date. We are 
much more civilized now, and nineteenth- or twentieth-century inventors who are far ahead of 
their times are no longer burned; they are merely allowed to starve to death; while 
those who are timely, but not commercially shrewd, are usually swindled by some promoter, who
 in turn is frozen out by a trust. In any case, you see, the simple technician gets 
the worst of it industrially, not because his physical science is weak, but because his 
commercial and mental shrewdness is not correspondingly developed. 

Taking a larger view of it, we shall see that almost every important advance in engineering 
progress is made only after a period of pause, an interval following proof of the tech- 
nical achievement, following even demonstration of its commercial economy. We might call this
 the psychological lag the time necessary for the growth of human faith suf- 
the electric railway, or the motor vehicle, for example, this this psychological or human 
element is of immense, even 

lag was measured by years. Bessemer could not convince 
the ironmasters of England, and had to build his own plant. 
Westinghouse, having gained after much difficulty an audi- 
ence with the greatest railroad manager of that day, was 
told that this practical railroad man had no time to waste 
on a damn fool who expected to stop railroad trains with 
wind. The matter deserves emphasis because it is almost 
certain to enter into the individual experience of every man. 
You will have to make someone believe you, and believe in 
you, before you can get anywhere or do anything. When a 
technical man has a proposition to put before an individual, 
or a group of individuals, or society at large, he is very 
likely to think that scientific demonstration of its technical 
soundness ought to be convincing. You will find, however, 
that men at large will substantially ignore scientific proof, 
and that you must add to it, second, proof of the commer- 
cial or economic argument, and third, that psychological 
force which convinces not the reason, but the emotions. In 
all industrial engineering, which involves dealing with men, 
trial activities go badly wrong in their philosophy, and get
controlling importance. The principles of the science are absolute, scientific, eternal. But methods, when we are dealing with men, must recognize the personal equation (which is psychologic) or failure will follow. The differ- ences between the several philosophies of works management as expressed in the wage systems which we are going to con- sider later are psychological. Success in handling men and women, which is one of the most important parts of the work of the industrial engineer, is founded on knowledge of human nature, which is psychology. The great industrial movement, then, with which we have to do is triune in its nature, the
three chief elements being the technical or scientific, the economic or commercial, and 
the psychological or human. They seldom respond at equal rates to the impetus of advance. 
Sometimes the technician pushes so far ahead that the world loses touch with what he 
is doing and his work lies long unused until civilization catches up; sometimes the 
commercial tendency is unduly aggressive, and discourages or impedes real scientific achieve- 
ment; very often the men most concerned with the indus- 
____________________________________________________________________________
disastrously false notions as to what makes for real progress and real welfare. More
difficulties, perhaps, come from this cause than from any other. 

To the technical man, it is an ever-present duty to keep in view absolute ideals, to seek 
every chance for their advancement, and to mould conditions and men so as to obtain con- 
stantly nearer approach to these ideals; but in doing this he must never forget to attach 
full weight to economic conditions, and he must never allow himself to ignore human nature. 

 
Footnote

1 A systematic presentation of the field of industrial engineering from 
an entirely different point of view and by a very different method will 
be found in " Factory Organization and Administration," by Prof. Hugo 
Diemer; McGraw-Hill Book Co. 


____________________________________________________________________________
Updated 15 July 2016,  11 January 2012