Tuesday, March 20, 2012

Human Effort Engineering

Human Effort Engineering - The Concept and Techniques

Human effort engineering is a term used in describing and defining industrial engineering by Narayana Rao.

Industrial Engineering can be described adequately by three components.

1. Human Effort Engineering

2. Systems Efficiency Engineering

3. Systems Design, Installation and Improvement Management



Human effort engineering is a term used in describing and defining industrial engineering by Narayana Rao.
The definition of industrial engineering given by Narayana Rao is:
“Industrial Engineering is Human Effort Engineering. It is an engineering discipline that deals with the design of human effort in all occupations: agricultural, manufacturing and service. The objectives of Industrial Engineering are optimization of productivity of work-systems and occupational comfort, health, safety and income of persons involved.” According to this definition the two focus areas of industrial engineering are human effort engineering and systems efficiency/productivity engineering.

Narayana Rao, K.V.S.S., “Definition of Industrial Engineering: Suggested Modification.” Udyog Pragati. October-December 2006. p. 1-4.

Components of Industrial Engineering

Industrial Engineering can be described adequately by three components.
1. Human Effort Engineering
2. Systems Efficiency Engineering
3. Systems Design,  Installation and Improvement Management
In the area of systems design, industrial engineering activities of human effort engineering and systems efficiency engineering are speciality engineering areas. As industrial engineering has a good involvement in the systems design through two important areas and also as industrial engineering is output conscious and profit (value) conscious, IE department can take up the management of systems design activities of an organization. The official definition of IE of IIE provides scope for all these activities by stating that IE is concerned with system design, installation and improvement. It does not emphatically says that IEs design systems. They do number of activities related to systems design especially where multiple resources are involved and in that role human factor definitely demands that IEs are involved in the systems design to eliminate waste related the utilization of human resources.

Marvin Mundel - Industrial Engineer

Different Kinds of Changes

To improve a work method (work system), innovations or changes are necessary in any one of the five areas that affect its performance.
They are:
1. Human activity: The hand and body motions or the perceptive or cognitive activity or their sequence may be changed to ease or improve the task.
2. Workstation (tools, workplace layout, or equipment): The design of any single workstation or the equipment used for any part of the task may be modified.
3. Process or work sequence: The order or condition in which the various work stations receive the in-process output may require change or the number of work stations may be modified.
4. Output design: The product design or the form of goods sold or the material sent out or the nature of the completed service may be changed in order to facilitate the attainment of the objectives of improvement.
5. Inputs: The incoming supplies of raw materials or parts may be changed with respect to the form, condition, specification, or timing of the arrival to allow the desired improvements to be made.
From the list of possible changes, innovations in human activity and work station fall in the domain of human effort engineering
Marvin Mundel, Motion and Time Study, Sixth Edition, Prentice Hall, 1985,Pp.36-37.

Basic Orders of Work Units

8th Order WU : Results - What is achieved due to the outputs (7th order WU)
(work-unit )
7th Order WU: Gross output
6th Order WU: Different product groups/ total output
5th Order WU: One End Product/output
4th Order WU: Intermediate product
3rd Order WU: Task - Individual or group
2nd Order WU: Element
1st Order WU: Motion
Analysis at 1st, 2nd and 3rd order work units is human effort engineering
Marvin Mundel, Motion and Time Study, Sixth Edition, Prentice Hall, 1985,Pp.96-99.

Human Effort Engineering - Areas of Design and Installation

Interface Device Design: Jigs and Fixtures
Motion Design: Motion Study
Posture Design
Comfort Design: fatigue analysis
Safety Design: Safety Aids
Occupational Hazard Analysis Certification
Work Measurement
Operator Training
Incentive scheme design

Time Study, Motion Study, and Methods Study

Time study was proposed by F.W. Taylor and as conceptualized by Taylor and it includes methods study and motion study in itself. Frank Gilbreth proposed motion study, but he did use the term methods also in his writings. Gilbreth recognized the contribution of Taylor in proposing in his time study, the study of work at element level. People credit Maynard in developing the concept of method study, to end the differences between followers of Taylor and Gilbreth over time study and motion study.
But as things stand today, we can separate the three. Method study is a study of various operations and their sequence. Methods efficiency design is an evaluation of method proposed by functional designers using method study approach. Each operation is to be performed by an individual man or man-machine system or in some cases by a group of men. Lifting of heavy furniture is an example wherein a group has to carry out an operation. Each operation requires motion design. Data for motion design comes from earlier motion studies and some study conducted as a part of the current motion design. Work measurement is carried out for each operation in an approved method. Work measurement can be carried out using predetermined motion time systems or time studies or work sampling methods as appropriate.

Taylor - A Pioneer in Human Effort Engineering

Henry Towne, Past President of A.S.M.E. in foreword to Shop Management, A Paper of F.W. Taylor, First published in 1910.
The substitution of machinery for unaided human labor was the great industrial achievement of the nineteenth century. The new achievement to which Dr. Taylor points the way consists in elevating human labor itself to a higher plane of efficiency and of earning power.
We are proud of the fact that the United States had led all other nations in the development of labor-saving machinery in almost every field of industry. Dr. Taylor has shown us methods whereby we can duplicate this ahievement by vastly increasing the efficiency of human labor, and of accomplishing thereby a large increase in the wage-earning capacity of the workman, and a still larger decrease in the labor cost of his product.
The Editor of the book Scientific Management, jointly published by Harper & Row, New York and John Weatherhill, Inc., Tokyo, 1911
"The Principles of Scientific Management," is simply an argument for Mr. Taylor's Philosophy of Human Labor, - an outline of the fundamental principles on which it rests.

Gilbreth Founder of Motion Study

Motion study : a method for increasing the efficiency of the workman (1911)
Applied motion study; a collection of papers on the efficient method to industrial preparedness (1917)
Fatigue study; the elimination of humanity's greatest unnecessary waste, a first step in motion study (1919)
Watch Original Movies Made by Gilbreth

Related knols



Related Articles and Papers

Estimating The Physical Effort of Human Poses, Yinpeng Chen, Hari Sundaram and Jodi James,
Arts, Media and Engineering, Arizona State University, Tempe, AZ, 85281
A Unique Learning System for Engineering: Technology of the Human Body!
Stephanie Farrell, Jennifer Kadlowec, Anthony Marchese, John Schmalzel, and Shreekanth Mandayam
Rowan University, Glassboro, NJ 08028
Therblig Analysis
Interesting Paper
Matching TRIZ engineering parameters to human factors issues in
DENIS A. COELHO, Department of Electromechanical Engineering
University of Beira Interior, Cal├žada Fonte do Lameiro, PORTUGAL
Abstract: - An overview of the development of the TRIZ problem solving approach is provided in the first part
of this paper. Having emerged in Russia in 1946, the Theory of Inventive Problem Solving Technique (TRIZ)
has been commonly used in the USA and Europe in the last few decades. TRIZ, as a method, has been used
successfully to solve problems such as many of those typically arising during the process of product
development, as reviewed in the second part of the paper. While the TRIZ method is also considered fit to
address human factors problems in manufacturing, straightforward application would benefit from a resource
gathering supporting knowledge and techniques. In the third part, analysis of previous work leads to suggest that new TRIZ method users might benefit from specific guidance in the interpretation of the engineering parameters in the contradiction matrix, considering human factors problems in manufacturing. A tentative correspondence is proposed in the fourth part between human factors issues in manufacturing and the engineering parameters in the matrix. The paper concludes emphasizing the need to further extract and categorize human factors and ergonomics principles and understand and analyze them under the light of the 40 inventive principles of TRIZ.
Key-Words: - Industrial engineering, Inventive principles,
  Original knol - Knol number 792

No comments:

Post a Comment